No Arabic abstract
With its origin in sociology, Social Network Analysis (SNA), quickly emerged and spread to other areas of research, including anthropology, biology, information science, organizational studies, political science, and computer science. Being its objective the investigation of social structures through the use of networks and graph theory, Social Network Analysis is, nowadays, an important research area in several domains. Social Network Analysis cope with different problems namely network metrics, models, visualization and information spreading, each one with several approaches, methods and algorithms. One of the critical areas of Social Network Analysis involves the calculation of different centrality measures (i.e.: the most important vertices within a graph). Today, the challenge is how to do this fast and efficiently, as many increasingly larger datasets are available. Recently, the need to apply such centrality algorithms to non static networks (i.e.: networks that evolve over time) is also a new challenge. Incremental and dynam
Competition networks are formed via adversarial interactions between actors. The Dynamic Competition Hypothesis predicts that influential actors in competition networks should have a large number of common out-neighbors with many other nodes. We empirically study this idea as a centrality score and find the measure predictive of importance in several real-world networks including food webs, conflict networks, and voting data from Survivor.
There is an ever-increasing interest in investigating dynamics in time-varying graphs (TVGs). Nevertheless, so far, the notion of centrality in TVG scenarios usually refers to metrics that assess the relative importance of nodes along the temporal evolution of the dynamic complex network. For some TVG scenarios, however, more important than identifying the central nodes under a given node centrality definition is identifying the key time instants for taking certain actions. In this paper, we thus introduce and investigate the notion of time centrality in TVGs. Analogously to node centrality, time centrality evaluates the relative importance of time instants in dynamic complex networks. In this context, we present two time centrality metrics related to diffusion processes. We evaluate the two defined metrics using both a real-world dataset representing an in-person contact dynamic network and a synthetically generated randomized TVG. We validate the concept of time centrality showing that diffusion starting at the best classified time instants (i.e. the most central ones), according to our metrics, can perform a faster and more efficient diffusion process.
Understanding the network structure, and finding out the influential nodes is a challenging issue in the large networks. Identifying the most influential nodes in the network can be useful in many applications like immunization of nodes in case of epidemic spreading, during intentional attacks on complex networks. A lot of research is done to devise centrality measures which could efficiently identify the most influential nodes in the network. There are two major approaches to the problem: On one hand, deterministic strategies that exploit knowledge about the overall network topology in order to find the influential nodes, while on the other end, random strategies are completely agnostic about the network structure. Centrality measures that can deal with a limited knowledge of the network structure are required. Indeed, in practice, information about the global structure of the overall network is rarely available or hard to acquire. Even if available, the structure of the network might be too large that it is too much computationally expensive to calculate global centrality measures. To that end, a centrality measure is proposed that requires information only at the community level to identify the influential nodes in the network. Indeed, most of the real-world networks exhibit a community structure that can be exploited efficiently to discover the influential nodes. We performed a comparative evaluation of prominent global deterministic strategies together with stochastic strategies with an available and the proposed deterministic community-based strategy. Effectiveness of the proposed method is evaluated by performing experiments on synthetic and real-world networks with community structure in the case of immunization of nodes for epidemic control.
Gould and Fernandez (1989) developed a local brokerage measure that defines brokering roles based on the group membership of the nodes from the incoming and outgoing edges. This paper extends on this brokerage measure to account for weighted edges and introduces the Weighted-Normalized Gould-Fernandez measure (WNGF). The measure is applied to the EUREGIO inter-regional trade dataset that is a complete, weighted, and directed graph, when transformed. The results gained from the WNGF measure are compared to those from two dichotomized networks: a threshold network and a multiscale backbone network. The results show that edge-weights carry important information regarding the network structure and that retaining edge-weight information ensures the heterogeneity and the nuanced understanding of the brokerage roles.
Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks. In the previous work (Xu et al, 2016 cite{xu2016}), we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight, and propose a weighted prediction index based on the contributions of paths, namely Weighted Path Entropy (WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three typical weighted indices.