Do you want to publish a course? Click here

The Radius-Luminosity Relationship Depends on Optical Spectra in Active Galactic Nuclei

65   0   0.0 ( 0 )
 Added by Pu Du
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The radius-luminosity (R-L) relationship of active galactic nuclei (AGNs) established by the reverberation mapping (RM) observations has been widely used as a single-epoch black hole mass estimator in the research of large AGN samples. However, the recent RM campaigns discovered that the AGNs with high accretion rates show shorter time lags by factors of a few comparing with the predictions from the R-L relationship. The explanation of the shortened time lags has not been finalized yet. We collect 8 different single-epoch spectral properties to investigate how the shortening of the time lags correlate with those properties and to understand what is the origin of the shortened lags. We find that the flux ratio between Fe II and H$beta$ emission lines shows the most prominent correlation, thus confirm that accretion rate is the main driver for the shortened lags. In addition, we establish a new scaling relation including the relative strength of Fe II emission. This new scaling relation can provide less biased estimates of the black hole mass and accretion rate from the single-epoch spectra of AGNs.



rate research

Read More

196 - Hermine Landt 2011
Black hole masses for samples of active galactic nuclei (AGN) are currently estimated from single-epoch optical spectra. In particular, the size of the broad-line emitting region needed to compute the black hole mass is derived from the optical or ultraviolet continuum luminosity. Here we consider the relationship between the broad-line region size, R, and the near-infrared (near-IR) AGN continuum luminosity, L, as the near-IR continuum suffers less dust extinction than at shorter wavelengths and the prospects for separating the AGN continuum from host-galaxy starlight are better in the near-IR than in the optical. For a relationship of the form R propto L^alpha, we obtain for a sample of 14 reverberation-mapped AGN a best-fit slope of alpha=0.5+/-0.1, which is consistent with the slope of the relationship in the optical band and with the value of 0.5 naively expected from photoionisation theory. Black hole masses can then be estimated from the near-IR virial product, which is calculated using the strong and unblended Paschen broad emission lines (Pa alpha or Pa beta).
We present an updated and revised analysis of the relationship between the Hbeta broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of 9 new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create AGN-free images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the Hbeta time lag, which is assumed to yield the average Hbeta BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of alpha = 0.533 (+0.035/-0.033), consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19(+/-0.02) dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the Universe to be probed by a separate population of objects, and over a larger range of redshifts.
We reinvestigate the relationship between the characteristic broad-line region size (R_blr) and the Balmer emission-line, X-ray, UV, and optical continuum luminosities. Our study makes use of the best available determinations of R_blr for a large number of active galactic nuclei (AGNs) from Peterson et al. Using their determinations of R_blr for a large sample of AGNs and two different regression methods, we investigate the robustness of our correlation results as a function of data sub-sample and regression technique. Though small systematic differences were found depending on the method of analysis, our results are generally consistent. Assuming a power-law relation R_blr propto L^alpha, we find the mean best-fitting alpha is about 0.67+/-0.05 for the optical continuum and the broad Hbeta luminosity, about 0.56+/-0.05 for the UV continuum luminosity, and about 0.70+/-0.14 for the X-ray luminosity. We also find an intrinsic scatter of about 40% in these relations. The disagreement of our results with the theoretical expected slope of 0.5 indicates that the simple assumption of all AGNs having on average same ionization parameter, BLR density, column density, and ionizing spectral energy distribution, is not valid and there is likely some evolution of a few of these characteristics along the luminosity scale.
105 - Misty C. Bentz 2008
We present high-resolution HST images of all 35 AGNs with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to ground-based spectroscopic luminosity measurements at 5100A. After correcting the luminosities of the AGNs for the contribution from starlight, we re-examine the Hbeta R-L relationship. Our best fit for the relationship gives a powerlaw slope of 0.52 with a range of 0.45 - 0.59 allowed by the uncertainties. This is consistent with our previous findings, and thus still consistent with the naive assumption that all AGNs are simply luminosity-scal
254 - Yan-Ping Chen 2018
We have conducted a study to quantify the systematic differences resulting from using different stellar population models in optical spectroscopic identification of type II AGN. We examined the different AGN detection fractions of 7069 nearby galaxies (z <= 0.09) with SDSS DR8 spectra when using the Bruzual & Charlot (2003, BC03), Vazdekis et al. (2010, MILES), and solar metallicity Maraston and Stromback (2011) (MS11solar) stellar population models. The line fluxes obtained using BC03 and MS11solar are publicly available from SDSS data releases. We find that the BC03 templates result in systematically higher BPT line ratios and consequently higher AGN fractions and the MS11solar templates result in systematically lower line ratios and AGN fractions compared with the MILES templates. Using MILES as the standard, BC03 results in 25% false positives and MS11solar results in 22% false negatives when using the Kewley et al. (2001a) boundary for AGN identification. The fraction of galaxies whose AGN identification changes for different templates is luminosity dependent, ranging from a few percent for L[OIII]5007 >= 10^40 erg s-1 and increasing to ~ 50% for L[OIII]5007 <= 10^38 erg s-1. These results suggest that template choice should be accounted for when using and comparing the AGN and emission line fluxes from different catalogs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا