No Arabic abstract
The search for Dark Matter (DM) has great potential to reveal physics beyond the Standard Model. As such, searches for evidence of DM particles are being carried out using a wide range of techniques, such as direct searches for DM particles, searches for DM produced with colliders, and indirect searches for the Standard Model annihilation products of DM. Dwarf spheroidal galaxies (dSphs) are excellent targets for indirect Dark Matter searches due to their relatively high DM content and negligible expected astrophysical background. A collaboration was formed to maximise the sensitivity of DM searches towards dSphs by combining for the first time dSph data from three imaging air Cherenkov telescope (IACT) arrays: HESS, MAGIC, and VERITAS; the Fermi-LAT satellite, and the water Cherenkov detector HAWC. Due to the diverse nature of the instruments involved, each experiment will analyse their individual datasets from multiple targets and then the results will be combined at the likelihood level. For consistency of the likelihoods across the five experiments, a common approach is used to treat the astrophysical factor (J-Factor) for each target and an agreed set of annihilation channels are considered. We also agree on a common statistical approach and treatment of instrumental systematic uncertainties. The results are presented in terms of constraints on the velocity-weighted cross section for DM self-annihilation as a function of the DM particle mass.
Cosmological and astrophysical observations suggest that 85% of the total matter of the Universe is made of Dark Matter (DM). However, its nature remains one of the most challenging and fundamental open questions of particle physics. Assuming particle DM, this exotic form of matter cannot consist of Standard Model (SM) particles. Many models have been developed to attempt unraveling the nature of DM such as Weakly Interacting Massive Particles (WIMPs), the most favored particle candidates. WIMP annihilations and decay could produce SM particles which in turn hadronize and decay to give SM secondaries such as high energy $gamma$ rays. In the framework of indirect DM search, observations of promising targets are used to search for signatures of DM annihilation. Among these, the dwarf spheroidal galaxies (dSphs) are commonly favored owing to their expected high DM content and negligible astrophysical background. In this work, we present the very first combination of 20 dSph observations, performed by the Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations in order to maximize the sensitivity of DM searches and improve the current results. We use a joint maximum likelihood approach combining each experiments individual analysis to derive more constraining upper limits on the WIMP DM self-annihilation cross-section as a function of DM particle mass. We present new DM constraints over the widest mass range ever reported, extending from 5 GeV to 100 TeV thanks to the combination of these five different $gamma$-ray instruments.
The H.E.S.S. experiment is an array of four identical imaging atmospheric Cherenkov telescopes in the Southern hemisphere, designed to observe very high energy gamma-rays (E > 100 GeV). These high energy gamma-rays can be used to search for annihilations of Dark Matter particles in dense environments. Dwarf galaxy dynamics shows that they are Dark Matter-dominated environments. Several observation campaigns on dwarf satellite galaxies of the Milky Way were launched by H.E.S.S.. The observations are reviewed. In the absence of clear signals, constraints on the Dark Matter particle annihilation cross-section have been derived in different particle physics scenarios. Some possible enhancements of the gamma-ray flux are studied, i.e., the Sommerfeld effect, the internal bremsstrahlung and the substructures in the Dark Matter halo.
We present the first MAGIC/Fermi-LAT joint search for dark matter annihilation gamma-ray signals from dwarf satellite galaxies. We combine 158 hours of observations of Segue 1 by MAGIC with 6-years observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a coherent and comprehensive analysis. Our new inclusive analysis approach is completely generic, and we propose to use it to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.
High energy ${gamma}$-rays are powerful probes in the search for annihilations of dark matter (DM) par- ticles in dense environments. In several DM particle models their annihilation produces characteristic features such as lines, bumps or cut-offs in their energy spectrum. The High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes is perfectly suited to search for such features from multi-TeV mass DM particles. The Dwarf Spheroidal Galaxies (dSphs) of the Local Group are the most common satellites of the Milky Way and assumed to be gravitationally bound dominantly by DM, with up to O(10 3 ) times more mass in DM than in visible matter. Over the past decade, several observational campaigns on dwarf satellite galaxies were launched by H.E.S.S. amounting to more than 140 hours of exposure in total. The observations are reviewed here. In the absence of clear signals, the expected spectral and spatial morphologies of signal and background are used to derive constraints on the DM particle annihilation cross- section for particle models producing line-like signals. The combination of the data of all the dwarf galaxies allows a significant improvement in the HESS sensitivity.
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. It can also perform diverse indirect searches for dark matter (DM) annihilation and decay. Among the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the HAWC field-of-view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC.