No Arabic abstract
We started a multi-scale analysis of G202.3+2.5, an intertwined filamentary region of Monoceros OB1. In Paper I, we examined the distributions of dense cores and protostars and found enhanced star formation (SF) activity in the junction region of the filaments. In this second paper, we aim to unveil the connections between the core and filament evolutions, and between the filament dynamics and the global evolution of the cloud. We characterise the gas dynamics and energy balance using Herschel and WISE observations and molecular tracers observed with the IRAM 30m and TRAO 14m telescopes. The velocity field of the cloud is examined and velocity-coherent structures are put in perspective with the cloud environment. Two main velocity components (VCs) are revealed, well separated in the north and merged around the location of intense N2H+ emission where Paper I found the peak of SF activity. The relative position of the two VCs along the sightline, and the velocity gradient in N2H+ emission imply that the VCs have been undergoing collision for ~10^5 yrs. The dense gas where N2H+ is detected is interpreted as the compressed region between the two filaments, which corresponds to a high mass inflow rate of ~1e-3 Msun/yr and possibly leads to an increase in its SF efficiency. We identify a protostar in the junction region that possibly powers two crossed intermittent outflows. We show that the HII region around the nearby cluster NCG 2264 is still expanding and its role in the collision is examined. However, we cannot rule out the idea that the collision arises mostly from the global collapse of the cloud. The (sub-)filament-scale observables examined in this paper reveal a collision between G202.3+2.5 sub-structures and its probable role in feeding the cores in the junction region. One must now characterise the cloud morphology, its fragmentation, and magnetic field, all at high resolution.
Current theories and models attempt to explain star formation globally, from core scales to giant molecular cloud scales. A multi-scale observational characterisation of an entire molecular complex is necessary to constrain them. We investigate star formation in G202.3+2.5, a ~10x3 pc sub-region of the Monoceros OB1 cloud with a complex morphology harbouring interconnected filamentary structures. We aim to connect the evolution of cores and filaments in G202.3+2.5 with the global evolution of the cloud and to identify the engines of the cloud dynamics. In this first paper, the star formation activity is evaluated by surveying the distributions of dense cores and protostars, and their evolutionary state, as characterised using both infrared observations from the Herschel and WISE telescopes and molecular line observations with the IRAM 30-m telescope. We find ongoing star formation in the whole cloud, with a local peak in star formation activity around the centre of G202.3+2.5 where a chain of massive cores (10-50 Msun) forms a massive ridge (>150 Msun). All evolutionary stages from starless cores to Class II protostars are found in G202.3+2.5, including a possibly starless, large column density (8x10^{22} cm-2), and massive (52 Msun) core. All the core-scale observables examined in this paper point to an enhanced star formation activity centred on the junction between the three main branches of the ramified structure of G202.3+2.5. This suggests that the increased star-formation activity results from the convergence of these branches. To further investigate the origin of this enhancement, it is now necessary to extend the analysis to larger scales, in order to examine the relationship between cores, filaments and their environment. We address these points through the analysis of the dynamics of G202.3+2.5 in a joint paper.
We study the large-scale magnetic field structure and its interplay with the gas dynamics in the Monoceros OB1 East molecular cloud. We combine observations of dust polarised emission from the Planck telescope and CO molecular line emission observations from the Taeduk Radio Astronomy Observatory 14-metre telescope. We calculate the strength of the plane-of-the-sky magnetic field using a modified Chandrasekhar-Fermi method and estimate mass over flux ratios in different regions of the cloud. We use the comparison of the velocity and intensity gradients of the molecular line observations with the polarimetric observations to trace dynamically active regions. The molecular complex shows an ordered large-scale plane-of-the-sky magnetic field structure. In the Northern part, it is mostly orientated along the filamentary structures while the Southern part shows at least two regions with distinct magnetic field orientations. We find that in the Northern filaments the magnetic field is unlikely to provide support against fragmentation at large scales. Our analysis reveals a shock region in the Northern part of the complex right in-between two filamentary clouds which were previously suggested to be in collision. Moreover, the shock seems to extend farther towards the Western part of the complex. In the Southern part, we find that either the magnetic field guides the accretion of interstellar matter towards the cloud or it was dragged by the matter towards the densest regions. The large-scale magnetic field in Monoceros OB-1 East molecular clouds is tightly connected to the global structure of the complex and, in the Northern part, it seems to be dominated by gravity and turbulence, while in the Southern part it influences the structuring of matter.
We present far-infrared, submillimetre, and millimetre observations of bright IRAS sources and outflows that are associated with massive CS clumps in the Monoceros OB1 Dark Cloud. Individual star-forming cores are identified within each clump. We show that combining submillimetre maps, obtained with SCUBA on the JCMT, with HIRES-processed and modelled IRAS data is a powerful technique that can be used to place better limits on individual source contributions to the far-infrared flux in clustered regions. Three previously categorized Class I objects are shown to consist of multiple sources in different evolutionary stages. In each case, the IRAS point source dominates the flux at 12 and 25 microns. In two cases, the IRAS point source is not evident at submillimetre wavelengths. The submillimetre sources contribute significantly to the 60 and 100 micron fluxes, dominating the flux in the 100 micron waveband. Using fluxes derived from our technique, we present the spectral energy distribution and physical parameters for an intermediate-mass Class 0 object in one of the regions. Our new CO J=2-1 outflow maps of the three regions studied indicate complex morphology suggestive of multiple driving sources. We discuss the possible implications of our results for published correlations between outflow momentum deposition rates and source luminosities, and for using these derived properties to estimate the ratio of mass ejection rates to mass accretion rates onto protostars.
Context. After the release of the gamma-ray source catalog produced by the Fermi satellite during its first two years of operation, a significant fraction of sources still remain unassociated at lower energies. In addition to well-known high-energy emitters (pulsars, blazars, supernova remnants, etc.) theoretical expectations predict new classes of gamma-ray sources. In particular, gamma-ray emission could be associated with some of the early phases of stellar evolution, but this interesting possibility is still poorly understood. Aims. The aim of this paper is to assess the possibility of the Fermi gamma-ray source 2FGL J0607.5-0618c being associated with the massive star forming region Monoceros R2. Methods. A multi-wavelength analysis of the Monoceros R2 region is carried out using archival data at radio, infrared, X-ray, and gamma-ray wavelengths. The resulting observational properties are used to estimate the physical parameters needed to test the different physical scenarios. Results. We confirm the 2FGL J0607.5-0618c detection with improved confidence over the Fermi two-year catalog. We find that a combined effect of the multiple young stellar objects in Monoceros R2 is a viable picture for the nature of the source.
High-mass stars and star clusters commonly form within hub-filament systems. Monoceros R2, harbors one of the closest such systems, making it an excellent target for case studies. We investigate the morphology, stability and dynamical properties of the hub-filament system on basis of 13CO and C18O observations obtained with the IRAM-30m telescope and H2 column density maps derived from Herschel dust emission observations. We identified the filamentary network and characterized the individual filaments as either main (converging into the hub) or secondary (converging to a main filament) filaments. The main filaments have line masses of 30-100 Msun/pc and show signs of fragmentation. The secondary filaments have line masses of 12-60 Msun/pc and show fragmentation only sporadically. In the context of Ostrikers hydrostatic filament model, the main filaments are thermally super-critical. If non-thermal motions are included, most of them are trans-critical. Most of the secondary filaments are roughly trans-critical regardless of whether non-thermal motions are included or not. From the main filaments, we estimate a mass accretion rate of 10(-4)-10(-3) Msun/pc into the hub. The secondary filaments accrete into the main filaments with a rate of 0.1-0.4x10(-4) Msun/pc. The main filaments extend into the hub. Their velocity gradients increase towards the hub, suggesting acceleration of the gas. We estimate that with the observed infall velocity, the mass-doubling time of the hub is ~2.5 Myr, ten times larger than the free-fall time, suggesting a dynamically old region. These timescales are comparable with the chemical age of the HII region. Inside the hub, the main filaments show a ring- or a spiral-like morphology that exhibits rotation and infall motions. One possible explanation for the morphology is that gas is falling into the central cluster following a spiral-like pattern.