Do you want to publish a course? Click here

Multi-scale analysis of the Monoceros OB 1 star-forming region: I. The dense core population

70   0   0.0 ( 0 )
 Added by Julien Montillaud
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Current theories and models attempt to explain star formation globally, from core scales to giant molecular cloud scales. A multi-scale observational characterisation of an entire molecular complex is necessary to constrain them. We investigate star formation in G202.3+2.5, a ~10x3 pc sub-region of the Monoceros OB1 cloud with a complex morphology harbouring interconnected filamentary structures. We aim to connect the evolution of cores and filaments in G202.3+2.5 with the global evolution of the cloud and to identify the engines of the cloud dynamics. In this first paper, the star formation activity is evaluated by surveying the distributions of dense cores and protostars, and their evolutionary state, as characterised using both infrared observations from the Herschel and WISE telescopes and molecular line observations with the IRAM 30-m telescope. We find ongoing star formation in the whole cloud, with a local peak in star formation activity around the centre of G202.3+2.5 where a chain of massive cores (10-50 Msun) forms a massive ridge (>150 Msun). All evolutionary stages from starless cores to Class II protostars are found in G202.3+2.5, including a possibly starless, large column density (8x10^{22} cm-2), and massive (52 Msun) core. All the core-scale observables examined in this paper point to an enhanced star formation activity centred on the junction between the three main branches of the ramified structure of G202.3+2.5. This suggests that the increased star-formation activity results from the convergence of these branches. To further investigate the origin of this enhancement, it is now necessary to extend the analysis to larger scales, in order to examine the relationship between cores, filaments and their environment. We address these points through the analysis of the dynamics of G202.3+2.5 in a joint paper.



rate research

Read More

We started a multi-scale analysis of G202.3+2.5, an intertwined filamentary region of Monoceros OB1. In Paper I, we examined the distributions of dense cores and protostars and found enhanced star formation (SF) activity in the junction region of the filaments. In this second paper, we aim to unveil the connections between the core and filament evolutions, and between the filament dynamics and the global evolution of the cloud. We characterise the gas dynamics and energy balance using Herschel and WISE observations and molecular tracers observed with the IRAM 30m and TRAO 14m telescopes. The velocity field of the cloud is examined and velocity-coherent structures are put in perspective with the cloud environment. Two main velocity components (VCs) are revealed, well separated in the north and merged around the location of intense N2H+ emission where Paper I found the peak of SF activity. The relative position of the two VCs along the sightline, and the velocity gradient in N2H+ emission imply that the VCs have been undergoing collision for ~10^5 yrs. The dense gas where N2H+ is detected is interpreted as the compressed region between the two filaments, which corresponds to a high mass inflow rate of ~1e-3 Msun/yr and possibly leads to an increase in its SF efficiency. We identify a protostar in the junction region that possibly powers two crossed intermittent outflows. We show that the HII region around the nearby cluster NCG 2264 is still expanding and its role in the collision is examined. However, we cannot rule out the idea that the collision arises mostly from the global collapse of the cloud. The (sub-)filament-scale observables examined in this paper reveal a collision between G202.3+2.5 sub-structures and its probable role in feeding the cores in the junction region. One must now characterise the cloud morphology, its fragmentation, and magnetic field, all at high resolution.
75 - D. Alina , J. Montillaud , Y. Hu 2020
We study the large-scale magnetic field structure and its interplay with the gas dynamics in the Monoceros OB1 East molecular cloud. We combine observations of dust polarised emission from the Planck telescope and CO molecular line emission observations from the Taeduk Radio Astronomy Observatory 14-metre telescope. We calculate the strength of the plane-of-the-sky magnetic field using a modified Chandrasekhar-Fermi method and estimate mass over flux ratios in different regions of the cloud. We use the comparison of the velocity and intensity gradients of the molecular line observations with the polarimetric observations to trace dynamically active regions. The molecular complex shows an ordered large-scale plane-of-the-sky magnetic field structure. In the Northern part, it is mostly orientated along the filamentary structures while the Southern part shows at least two regions with distinct magnetic field orientations. We find that in the Northern filaments the magnetic field is unlikely to provide support against fragmentation at large scales. Our analysis reveals a shock region in the Northern part of the complex right in-between two filamentary clouds which were previously suggested to be in collision. Moreover, the shock seems to extend farther towards the Western part of the complex. In the Southern part, we find that either the magnetic field guides the accretion of interstellar matter towards the cloud or it was dragged by the matter towards the densest regions. The large-scale magnetic field in Monoceros OB-1 East molecular clouds is tightly connected to the global structure of the complex and, in the Northern part, it seems to be dominated by gravity and turbulence, while in the Southern part it influences the structuring of matter.
Context. After the release of the gamma-ray source catalog produced by the Fermi satellite during its first two years of operation, a significant fraction of sources still remain unassociated at lower energies. In addition to well-known high-energy emitters (pulsars, blazars, supernova remnants, etc.) theoretical expectations predict new classes of gamma-ray sources. In particular, gamma-ray emission could be associated with some of the early phases of stellar evolution, but this interesting possibility is still poorly understood. Aims. The aim of this paper is to assess the possibility of the Fermi gamma-ray source 2FGL J0607.5-0618c being associated with the massive star forming region Monoceros R2. Methods. A multi-wavelength analysis of the Monoceros R2 region is carried out using archival data at radio, infrared, X-ray, and gamma-ray wavelengths. The resulting observational properties are used to estimate the physical parameters needed to test the different physical scenarios. Results. We confirm the 2FGL J0607.5-0618c detection with improved confidence over the Fermi two-year catalog. We find that a combined effect of the multiple young stellar objects in Monoceros R2 is a viable picture for the nature of the source.
NGC 2024, a sites of massive star formation, have complex internal structures caused by cal heating by young stars, outflows, and stellar winds. These complex cloud structures lead to intricate emission line shapes. The goal of this paper is to show that the complex line shapes of 12 CO lines in NGC 2024 can be explained consistently with a model, whose temperature and velocity structure are based on the well-established scenario of a PDR and the Blister model. We present velocity-resolved spectra of seven CO lines ranging from J=3 to J=13, and we combined these data with CO high-frequency data from the ISO satellite. We find that the bulk of the molecular cloud associated with NGC 2024 consists of warm (75 K) and dense (9e5 cm-3) gas. An additional hot (~ 300 K) component, located at the interface of the HII region and the molecular cloud, is needed to explain the emission of the high-J CO lines. Deep absorption notches indicate that very cold material (20 K) exists in front of the warm material, too. A temperature and column density structure consistent with those predicted by PDR models, combined with the velocity structure of a Blister model, appropriately describes the observed emission line profiles of this massive star forming region. This case study of NGC 2024 shows that, with physical insights into these complex regions and careful modeling, multi-line observations of CO can be used to derive detailed physical conditions in massive star forming regions.
The processes regulating star formation in galaxies are thought to act across a hierarchy of spatial scales. To connect extragalactic star formation relations from global and kpc-scale measurements to recent cloud-scale resolution studies, we have developed a simple, robust method that quantifies the scale dependence of the relative spatial distributions of molecular gas and recent star formation. In this paper, we apply this method to eight galaxies with roughly 1 arcsec resolution molecular gas imaging from the PHANGS-ALMA and PAWS surveys that have matched resolution, high quality narrowband Halpha imaging. At a common scale of 140pc, our massive (log(Mstar/Msun)=9.3-10.7), normally star-forming (SFR/Msun/yr=0.3-5.9) galaxies exhibit a significant reservoir of quiescent molecular gas not associated with star formation as traced by Halpha emission. Galactic structures act as backbones for both molecular and HII region distributions. As we degrade the spatial resolution, the quiescent molecular gas disappears, with the most rapid changes occurring for resolutions up to about 0.5kpc. As the resolution becomes poorer, the morphological features become indistinct for spatial scales larger than about 1kpc. The method is a promising tool to search for relationships between the quiescent or star-forming molecular reservoir and galaxy properties, but requires a larger sample size to identify robust correlations between the star-forming molecular gas fraction and global galaxy parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا