Do you want to publish a course? Click here

Spin Transport in Thick Insulating Antiferromagnetic Films

70   0   0.0 ( 0 )
 Added by Roberto Troncoso
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin transport of magnonic excitations in uniaxial insulating antiferromagnets (AFs) is investigated. In linear response to spin biasing and a temperature gradient, the spin transport properties of normal-metal--insulating antiferromagnet--normal-metal heterostructures are calculated. We focus on the thick-film regime, where the AF is thicker than the magnon equilibration length. This regime allows the use of a drift-diffusion approach, which is opposed to the thin-film limit considered by Bender {it et al.} 2017, where a stochastic approach is justified. We obtain the temperature- and thickness-dependence of the structural spin Seebeck coefficient $mathcal{S}$ and magnon conductance $mathcal{G}$. In their evaluation we incorporate effects from field- and temperature-dependent spin conserving inter-magnon scattering processes. Furthermore, the interfacial spin transport is studied by evaluating the contact magnon conductances in a microscopic model that accounts for the sub-lattice symmetry breaking at the interface. We find that while inter-magnon scattering does slightly suppress the spin Seebeck effect, transport is generally unaffected, with the relevant spin decay length being determined by non-magnon-conserving processes such as Gilbert damping. In addition, we find that while the structural spin conductance may be enhanced near the spin flip transition, it does not diverge due to spin impedance at the normal metal|magnet interfaces.



rate research

Read More

Electrical generation of THz spin waves is theoretically explored in an antiferromangetic nanostrip via the current-induced spin-orbit torque. The analysis based on micromagnetic simulations clearly illustrates that the Neel-vector oscillations excited at one end of the magnetic strip can propagate in the form of a traveling wave when the nanostrip axis aligns with the magnetic easy-axis. A sizable threshold is observed in the driving current density or the torque to overcome the unfavorable anisotropy as expected. The generated spin waves are found to travel over a long distance while the angle of rotation undergoes continuous decay in the presence of non-zero damping. The oscillation frequency is tunable via the strength of the spin-orbit torque, reaching the THz regime. Other key characteristics of the spin waves such as the phase and the chirality can also be modulated actively. The simulation results further indicate the possibility of wave-like superposition between the excited spin oscillations, illustrating its application as an efficient source of spin-wave signals for information processing.
83 - Sergey Dushenko 2018
Electric gating can strongly modulate a wide variety of physical properties in semiconductors and insulators, such as significant changes of conductivity in silicon, appearance of superconductivity in SrTiO3, the paramagnet-ferromagnet transition in (In,Mn)As and so on. The key to such modulation is charge accumulation in solids. Thus, it has been believed that such modulation is out of reach for conventional metals where the number of carriers is too large. However, success in tuning the Curie temperature of ultrathin cobalt gave hope of finally achieving such degree of control even in metallic materials. Here, we show reversible modulation of up to two orders of magnitude of the inverse spin Hall effect - a phenomenon that governs interconversion between spin and charge currents - in ultrathin platinum. Spin-to-charge conversion enables the generation and use of electric and spin currents in the same device, which is crucial for the future of spintronics and electronics.
Antiferromagnetic insulators (AFIs) are of significant interest due to their potential to develop next-generation spintronic devices. One major effort in this emerging field is to harness AFIs for long-range spin information communication and storage. Here, we report a non-invasive method to optically access the intrinsic spin transport properties of an archetypical AFI {alpha}-Fe2O3 via nitrogen-vacancy (NV) quantum spin sensors. By NV relaxometry measurements, we successfully detect the time-dependent fluctuations of the longitudinal spin density of {alpha}-Fe2O3. The observed frequency dependence of the NV relaxation rate is in agreement with a theoretical model, from which an intrinsic spin diffusion constant of {alpha}-Fe2O3 is experimentally measured in the absence of external spin biases. Our results highlight the significant opportunity offered by NV centers in diagnosing the underlying spin transport properties in a broad range of high-frequency magnetic materials, which are challenging to access by more conventional measurement techniques.
We present a study of the transport properties of thermally generated spin currents in an insulating ferrimagnetic-antiferromagnetic-ferrimagnetic trilayer over a wide range of temperature. Spin currents generated by the spin Seebeck effect (SSE) in a yttrium iron garnet (YIG) YIG/NiO/YIG trilayer on a gadolinium gallium garnet (GGG) substrate were detected using the inverse spin Hall effect in Pt. By studying samples with different NiO thicknesses, the NiO spin diffusion length was determined to be 4.2 nm at room temperature. Interestingly, below 30 K, the inverse spin Hall signals are associated with the GGG substrate. The field dependence of the signal follows a Brillouin function for a S=7/2 spin ($mathrm{Gd^{3+}}$) at low temperature. Sharp changes in the SSE signal at low fields are due to switching of the YIG magnetization. A broad peak in the SSE response was observed around 100 K, which we associate with an increase in the spin-diffusion length in YIG. These observations are important in understanding the generation and transport properties of spin currents through magnetic insulators and the role of a paramagnetic substrate in spin current generation.
176 - J. Velasco Jr. , L. Jing , W. Bao 2011
The flat bands in bilayer graphene(BLG) are sensitive to electric fields Ebot directed between the layers, and magnify the electron-electron interaction effects, thus making BLG an attractive platform for new two-dimensional (2D) electron physics[1-5]. Theories[6-16] have suggested the possibility of a variety of interesting broken symmetry states, some characterized by spontaneous mass gaps, when the electron-density is at the carrier neutrality point (CNP). The theoretically proposed gaps[6,7,10] in bilayer graphene are analogous[17,18] to the masses generated by broken symmetries in particle physics and give rise to large momentum-space Berry curvatures[8,19] accompanied by spontaneous quantum Hall effects[7-9]. Though recent experiments[20-23] have provided convincing evidence of strong electronic correlations near the CNP in BLG, the presence of gaps is difficult to establish because of the lack of direct spectroscopic measurements. Here we present transport measurements in ultra-clean double-gated BLG, using source-drain bias as a spectroscopic tool to resolve a gap of ~2 meV at the CNP. The gap can be closed by an electric field Ebot sim13 mV/nm but increases monotonically with a magnetic field B, with an apparent particle-hole asymmetry above the gap, thus providing the first mapping of the ground states in BLG.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا