Do you want to publish a course? Click here

Accelerating Training using Tensor Decomposition

59   0   0.0 ( 0 )
 Added by Mostafa Elhoushi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Tensor decomposition is one of the well-known approaches to reduce the latency time and number of parameters of a pre-trained model. However, in this paper, we propose an approach to use tensor decomposition to reduce training time of training a model from scratch. In our approach, we train the model from scratch (i.e., randomly initialized weights) with its original architecture for a small number of epochs, then the model is decomposed, and then continue training the decomposed model till the end. There is an optional step in our approach to convert the decomposed architecture back to the original architecture. We present results of using this approach on both CIFAR10 and Imagenet datasets, and show that there can be upto 2x speed up in training time with accuracy drop of upto 1.5% only, and in other cases no accuracy drop. This training acceleration approach is independent of hardware and is expected to have similar speed ups on both CPU and GPU platforms.



rate research

Read More

144 - Miao Yin , Yang Sui , Siyu Liao 2021
Advanced tensor decomposition, such as Tensor train (TT) and Tensor ring (TR), has been widely studied for deep neural network (DNN) model compression, especially for recurrent neural networks (RNNs). However, compressing convolutional neural networks (CNNs) using TT/TR always suffers significant accuracy loss. In this paper, we propose a systematic framework for tensor decomposition-based model compression using Alternating Direction Method of Multipliers (ADMM). By formulating TT decomposition-based model compression to an optimization problem with constraints on tensor ranks, we leverage ADMM technique to systemically solve this optimization problem in an iterative way. During this procedure, the entire DNN model is trained in the original structure instead of TT format, but gradually enjoys the desired low tensor rank characteristics. We then decompose this uncompressed model to TT format and fine-tune it to finally obtain a high-accuracy TT-format DNN model. Our framework is very general, and it works for both CNNs and RNNs, and can be easily modified to fit other tensor decomposition approaches. We evaluate our proposed framework on different DNN models for image classification and video recognition tasks. Experimental results show that our ADMM-based TT-format models demonstrate very high compression performance with high accuracy. Notably, on CIFAR-100, with 2.3X and 2.4X compression ratios, our models have 1.96% and 2.21% higher top-1 accuracy than the original ResNet-20 and ResNet-32, respectively. For compressing ResNet-18 on ImageNet, our model achieves 2.47X FLOPs reduction without accuracy loss.
The alternating least squares algorithm for CP and Tucker decomposition is dominated in cost by the tensor contractions necessary to set up the quadratic optimization subproblems. We introduce a novel family of algorithms that uses perturbative corrections to the subproblems rather than recomputing the tensor contractions. This approximation is accurate when the factor matrices are changing little across iterations, which occurs when alternating least squares approaches convergence. We provide a theoretical analysis to bound the approximation error. Our numerical experiments demonstrate that the proposed pairwise perturbation algorithms are easy to control and converge to minima that are as good as alternating least squares. The experimental results show improvements of up to 3.1X with respect to state-of-the-art alternating least squares approaches for various model tensor problems and real datasets.
Over-parametrization is an important technique in training neural networks. In both theory and practice, training a larger network allows the optimization algorithm to avoid bad local optimal solutions. In this paper we study a closely related tensor decomposition problem: given an $l$-th order tensor in $(R^d)^{otimes l}$ of rank $r$ (where $rll d$), can variants of gradient descent find a rank $m$ decomposition where $m > r$? We show that in a lazy training regime (similar to the NTK regime for neural networks) one needs at least $m = Omega(d^{l-1})$, while a variant of gradient descent can find an approximate tensor when $m = O^*(r^{2.5l}log d)$. Our results show that gradient descent on over-parametrized objective could go beyond the lazy training regime and utilize certain low-rank structure in the data.
Hypergraphs have gained increasing attention in the machine learning community lately due to their superiority over graphs in capturing super-dyadic interactions among entities. In this work, we propose a novel approach for the partitioning of k-uniform hypergraphs. Most of the existing methods work by reducing the hypergraph to a graph followed by applying standard graph partitioning algorithms. The reduction step restricts the algorithms to capturing only some weighted pairwise interactions and hence loses essential information about the original hypergraph. We overcome this issue by utilizing the tensor-based representation of hypergraphs, which enables us to capture actual super-dyadic interactions. We prove that the hypergraph to graph reduction is a special case of tensor contraction. We extend the notion of minimum ratio-cut and normalized-cut from graphs to hypergraphs and show the relaxed optimization problem is equivalent to tensor eigenvalue decomposition. This novel formulation also enables us to capture different ways of cutting a hyperedge, unlike the existing reduction approaches. We propose a hypergraph partitioning algorithm inspired from spectral graph theory that can accommodate this notion of hyperedge cuts. We also derive a tighter upper bound on the minimum positive eigenvalue of even-order hypergraph Laplacian tensor in terms of its conductance, which is utilized in the partitioning algorithm to approximate the normalized cut. The efficacy of the proposed method is demonstrated numerically on simple hypergraphs. We also show improvement for the min-cut solution on 2-uniform hypergraphs (graphs) over the standard spectral partitioning algorithm.
Link prediction in graphs is studied by modeling the dyadic interactions among two nodes. The relationships can be more complex than simple dyadic interactions and could require the user to model super-dyadic associations among nodes. Such interactions can be modeled using a hypergraph, which is a generalization of a graph where a hyperedge can connect more than two nodes. In this work, we consider the problem of hyperedge prediction in a $k-$uniform hypergraph. We utilize the tensor-based representation of hypergraphs and propose a novel interpretation of the tensor eigenvectors. This is further used to propose a hyperedge prediction algorithm. The proposed algorithm utilizes the textit{Fiedler} eigenvector computed using tensor eigenvalue decomposition of hypergraph Laplacian. The textit{Fiedler} eigenvector is used to evaluate the construction cost of new hyperedges, which is further utilized to determine the most probable hyperedges to be constructed. The functioning and efficacy of the proposed method are illustrated using some example hypergraphs and a few real datasets. The code for the proposed method is available on https://github.com/d-maurya/hypred_ tensorEVD

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا