Do you want to publish a course? Click here

Beyond Lazy Training for Over-parameterized Tensor Decomposition

122   0   0.0 ( 0 )
 Added by Xiang Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Over-parametrization is an important technique in training neural networks. In both theory and practice, training a larger network allows the optimization algorithm to avoid bad local optimal solutions. In this paper we study a closely related tensor decomposition problem: given an $l$-th order tensor in $(R^d)^{otimes l}$ of rank $r$ (where $rll d$), can variants of gradient descent find a rank $m$ decomposition where $m > r$? We show that in a lazy training regime (similar to the NTK regime for neural networks) one needs at least $m = Omega(d^{l-1})$, while a variant of gradient descent can find an approximate tensor when $m = O^*(r^{2.5l}log d)$. Our results show that gradient descent on over-parametrized objective could go beyond the lazy training regime and utilize certain low-rank structure in the data.



rate research

Read More

89 - Rong Ge , Yunwei Ren , Xiang Wang 2021
In this paper we study the training dynamics for gradient flow on over-parametrized tensor decomposition problems. Empirically, such training process often first fits larger components and then discovers smaller components, which is similar to a tensor deflation process that is commonly used in tensor decomposition algorithms. We prove that for orthogonally decomposable tensor, a slightly modified version of gradient flow would follow a tensor deflation process and recover all the tensor components. Our proof suggests that for orthogonal tensors, gradient flow dynamics works similarly as greedy low-rank learning in the matrix setting, which is a first step towards understanding the implicit regularization effect of over-parametrized models for low-rank tensors.
We study the supervised learning problem under either of the following two models: (1) Feature vectors ${boldsymbol x}_i$ are $d$-dimensional Gaussians and responses are $y_i = f_*({boldsymbol x}_i)$ for $f_*$ an unknown quadratic function; (2) Feature vectors ${boldsymbol x}_i$ are distributed as a mixture of two $d$-dimensional centered Gaussians, and $y_i$s are the corresponding class labels. We use two-layers neural networks with quadratic activations, and compare three different learning regimes: the random features (RF) regime in which we only train the second-layer weights; the neural tangent (NT) regime in which we train a linearization of the neural network around its initialization; the fully trained neural network (NN) regime in which we train all the weights in the network. We prove that, even for the simple quadratic model of point (1), there is a potentially unbounded gap between the prediction risk achieved in these three training regimes, when the number of neurons is smaller than the ambient dimension. When the number of neurons is larger than the number of dimensions, the problem is significantly easier and both NT and NN learning achieve zero risk.
Over-parameterization and adaptive methods have played a crucial role in the success of deep learning in the last decade. The widespread use of over-parameterization has forced us to rethink generalization by bringing forth new phenomena, such as implicit regularization of optimization algorithms and double descent with training progression. A series of recent works have started to shed light on these areas in the quest to understand -- why do neural networks generalize well? The setting of over-parameterized linear regression has provided key insights into understanding this mysterious behavior of neural networks. In this paper, we aim to characterize the performance of adaptive methods in the over-parameterized linear regression setting. First, we focus on two sub-classes of adaptive methods depending on their generalization performance. For the first class of adaptive methods, the parameter vector remains in the span of the data and converges to the minimum norm solution like gradient descent (GD). On the other hand, for the second class of adaptive methods, the gradient rotation caused by the pre-conditioner matrix results in an in-span component of the parameter vector that converges to the minimum norm solution and the out-of-span component that saturates. Our experiments on over-parameterized linear regression and deep neural networks support this theory.
The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great importance. We propose a novel orthogonal over-parameterized training (OPT) framework that can provably minimize the hyperspherical energy which characterizes the diversity of neurons on a hypersphere. By maintaining the minimum hyperspherical energy during training, OPT can greatly improve the empirical generalization. Specifically, OPT fixes the randomly initialized weights of the neurons and learns an orthogonal transformation that applies to these neurons. We consider multiple ways to learn such an orthogonal transformation, including unrolling orthogonalization algorithms, applying orthogonal parameterization, and designing orthogonality-preserving gradient descent. For better scalability, we propose the stochastic OPT which performs orthogonal transformation stochastically for partial dimensions of neurons. Interestingly, OPT reveals that learning a proper coordinate system for neurons is crucial to generalization. We provide some insights on why OPT yields better generalization. Extensive experiments validate the superiority of OPT over the standard training.
This work is substituted by the paper in arXiv:2011.14066. Stochastic gradient descent is the de facto algorithm for training deep neural networks (DNNs). Despite its popularity, it still requires fine tuning in order to achieve its best performance. This has led to the development of adaptive methods, that claim automatic hyper-parameter optimization. Recently, researchers have studied both algorithmic classes via toy examples: e.g., for over-parameterized linear regression, Wilson et. al. (2017) shows that, while SGD always converges to the minimum-norm solution, adaptive methods show no such inclination, leading to worse generalization capabilities. Our aim is to study this conjecture further. We empirically show that the minimum weight norm is not necessarily the proper gauge of good generalization in simplified scenaria, and different models found by adaptive methods could outperform plain gradient methods. In practical DNN settings, we observe that adaptive methods can outperform SGD, with larger weight norm output models, but without necessarily reducing the amount of tuning required.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا