Do you want to publish a course? Click here

Effect of the repulsive core in the proton-neutron potential on deuteron elastic breakup cross sections

76   0   0.0 ( 0 )
 Added by Kazuyuki Ogata
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The role of the short-range part (repulsive core) of the proton-neutron ($pn$) potential in deuteron elastic breakup processes is investigated. A simplified one-range Gaussian potential and the Argonne V4 (AV4) central potential are adopted in the continuum-discretized coupled-channels (CDCC) method. The deuteron breakup cross sections calculated with these two potentials are compared. The repulsive core is found not to affect the deuteron breakup cross sections at energies from 40 MeV to 1 GeV. To understand this result, an analysis of the peripherality of the elastic breakup processes concerning the $p$-$n$ relative coordinate is performed. It is found that for the breakup processes populating the $pn$ continua with orbital angular momentum $ell$ different from 0, the reaction process is peripheral, whereas it is not for the breakup to the $ell=0$ continua (the s-wave breakup). The result of the peripherality analysis indicates that the whole spatial region of deuteron contributes to the s-wave breakup.



rate research

Read More

The hadron-deuteron correlation function has attracted many interests as a potential method to access the three-hadron interactions. However, the weakly-bound nature of deuteron has not been considered in the preceding studies. In this study, the breakup effect of deuteron on the deuteron-$Xi^-$ ($d$-$Xi^-$) correlation function $C_{dXi^-}$ is investigated. The $d$-$Xi^-$ scattering is described by a nucleon-nucleon-$Xi$ three-body reaction model. The continuum-discretized coupled-channels method, which is a fully quantum-mechanical and non-perturbative reaction model, is adopted. $C_{dXi^-}$ turns out to be sensitive to the strong interaction and enhanced by the deuteron breakup effect by 6--8 % for the $d$-$Xi^-$ relative momentum below about 70 MeV/$c$. Low-lying neutron-neutron continuum states are responsible for this enhancement. Within the adopted model, the deuteron breakup effect on $C_{dXi^-}$ is found to be appreciable but not very significant. Except for the enhancement by several percent, studies on $C_{dXi^-}$ without the deuteron breakup effect can be justified.
537 - W. Parol , A. Kozela , K. Bodek 2020
Differential cross sections for deuteron breakup $^{1}H(d, pp)n$ reaction were measured for a large set of 243 geometrical configurations at the beam energy of 80 MeV/nucleon. The cross section data are normalized by the luminosity factor obtained on the basis of simultaneous measurement of elastic scattering channel and the existing cross section data for this process. The results are compared to the theoretical calculations modeling nuclear interaction with and without taking into account the three-nucleon force (3NF) and Coulomb interaction. In the validated region of the phase space both the Coulomb force and 3NF play an important role in a good description of the data. There are also regions, where the improvements of description due to including 3NF are not sufficient.
116 - St. Kistryn , E. Stephan , B. Klos 2006
High precision cross-section data of the deuteron-proton breakup reaction at 130 MeV deuteron energy are compared with the theoretical predictions obtained with a coupled-channel extension of the CD Bonn potential with virtual Delta-isobar excitation, without and with inclusion of the long-range Coulomb force. The Coulomb effect is studied on the basis of the cross-section data set, extended in this work to about 1500 data points by including breakup geometries characterized by small polar angles of the two protons. The experimental data clearly prefer predictions obtained with the Coulomb interaction included. The strongest effects are observed in regions in which the relative energy of the two protons is the smallest.
163 - K. Wimmer , D. Bazin , A. Gade 2014
The 9Be(28Mg,27Na) one-proton removal reaction with a large proton separation energy of Sp(28Mg)=16.79 MeV is studied at intermediate beam energy. Coincidences of the bound 27Na residues with protons and other light charged particles are measured. These data are analyzed to determine the percentage contributions to the proton removal cross section from the elastic and inelastic nucleon removal mechanisms. These deduced contributions are compared with the eikonal reaction model predictions and with the previously measured data for reactions involving the re- moval of more weakly-bound protons from lighter nuclei. The role of transitions of the proton between different bound single-particle configurations upon the elastic breakup cross section is also quantified in this well-bound case. The measured and calculated elastic breakup fractions are found to be in good agreement.
Background: Eclipse effect of the neutron and proton in a deuteron target is essential to correctly describe high-energy deuteron scattering. The nucleus-deuteron scattering needs information not only on the nucleus-proton but also the nucleus-neutron interaction, for which no direct measurement of the nucleus-neutron cross sections is available for unstable nuclei. Purpose: We systematically evaluated the total reaction cross sections by a deuteron target to explore the feasibility of extracting the nucleus-neutron interaction from measurable cross sections. Methods: High-energy nucleus-deuteron collision is described by the Glauber model, in which the proton and neutron configuration of the deuteron is explicitly taken into account. Results: Our calculation reproduces available experimental total reaction cross section data on the nucleus-deuteron scattering. The possibility of extracting the nucleus-neutron total reaction cross section from nucleus-deuteron and nucleus-proton total reaction cross sections is explored. The total reaction cross sections of a nucleus by proton, neutron, and deuteron targets can be expressed, to good accuracy, in terms of the nuclear matter radius and neutron skin thickness. Incident-energy dependence of the total reaction cross sections is examined. Conclusions: The total reaction cross section on a deuteron target includes information on both the nucleus-neutron and nucleus-proton profile functions. Measuring the cross sections by deuteron and proton targets is a promising tool to extract the nuclear size properties.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا