No Arabic abstract
NGC 2345 is a young open cluster hosting seven blue and red supergiants, low metallicity and a high fraction of Be stars which makes it a privileged laboratory to study stellar evolution. We aim to improve the determination of the cluster parameters and study the Be phenomenon. Our objective is also to characterise its seven evolved stars by deriving their atmospheric parameters and chemical abundances. We performed a complete analysis combining for the first time $ubvy$ photometry with spectroscopy as well as $Gaia$ Data Release 2. We obtained spectra with classification purposes for 76 stars and high-resolution spectroscopy for an in-depth analysis of the blue and red evolved stars. We identify a new red supergiant and 145 B-type likely members within a radius of 18.7$pm$1.2 arcmin, which implies an initial mass, $M_{textrm{cl}}approx$5200 M$_{odot}$. We find a distance of 2.5$pm$0.2 kpc for NGC 2345, placing it at $R_{textrm{GC}}$=10.2$pm$0.2 kpc. Isochrone fitting supports an age of 56$pm$13 Ma, implying masses around 6.5 M$_{odot}$ for the supergiants. A high fraction of Be stars ($approx$10$%$) is found. From the spectral analysis we estimate for the cluster an average $v_{textrm{rad}}$=$+58.6pm0.5$ kms$^{-1}$ and a low metallicity, [Fe/H]=$-$0.28$pm$0.07. We also have determined chemical abundances for Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y, and Ba for the evolved stars. The chemical composition of the cluster is consistent with that of the Galactic thin disc. One of the K supergiants, S50, is a Li-rich star, presenting an A(Li)$approx$2.1. An overabundance of Ba is found, supporting the enhanced $s$-process. NGC 2345 has a low metallicity for its Galactocentric distance, comparable to typical LMC stars. It is massive enough to serve as a testbed for theoretical evolutionary models for massive intermediate-mass stars.
We present CCD $UBVRI$ photometry of the field of the open cluster NGC 6866. Structural parameters of the cluster are determined utilizing the stellar density profile of the stars in the field. We calculate the probabilities of the stars being a physical member of the cluster using their astrometric data and perform further analyses using only the most probable members. The reddening and metallicity of the cluster were determined by independent methods. The LAMOST spectra and the ultraviolet excess of the F and G type main-sequence stars in the cluster indicate that the metallicity of the cluster is about the solar value. We estimated the reddening $E(B-V)=0.074 pm 0.050$ mag using the $U-B$ vs $B-V$ two-colour diagram. The distance modula, the distance and the age of NGC 6866 were derived as $mu = 10.60 pm 0.10$ mag, $d=1189 pm 75$ pc and $t = 813 pm 50$ Myr, respectively, by fitting colour-magnitude diagrams of the cluster with the PARSEC isochrones. The Galactic orbit of NGC 6866 indicates that the cluster is orbiting in a slightly eccentric orbit with $e=0.12$. The mass function slope $x=1.35 pm 0.08$ was derived by using the most probable members of the cluster.
NGC 6067 is a young open cluster hosting the largest population of evolved stars among known Milky Way clusters in the 50-150 Ma age range. It thus represents the best laboratory in our Galaxy to constrain the evolutionary tracks of 5-7 M$_{odot}$ stars. We have used high-resolution spectra of a large sample of bright cluster members (45), combined with archival photometry, to obtain accurate parameters for the cluster as well as stellar atmospheric parameters. We derive a distance of 1.78$pm$0.12 kpc, an age of 90$pm$20 Ma and a tidal radius of 14.8$^{6.8}_{3.2}$ arcmin. We estimate an initial mass above 5700 M$_{odot}$, for a present-day evolved population of two Cepheids, two A supergiants and 12 red giants with masses $approx$6 M$_{odot}$. We also determine chemical abundances of Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y and Ba for the red clump stars. We find a supersolar metallicity, [Fe/H]=+0.19$pm$0.05, and a homogeneus chemical composition, consistent with the Galactic metallicity gradient. The presence of a Li-rich red giant, star 276 with A(Li)=2.41, is also detected. An over-abundance of Ba is found, supporting the enhanced $s$-process. The ratio of yellow to red giants is much smaller than one, in agreement with models with moderate overshooting, but the properties of the cluster Cepheids do not seem consistent with current Padova models for supersolar metallicity.
Using UBVRI Halpha CCD photometric observations and the archival NIR and X-ray data, we have carried out a multi-wavelength study of a young star cluster NGC 7419. An age of 22.5+/-3.0 Myr and a distance of 3230^{+330}_{-430} pc are derived for the cluster with a higher value of color excess ratio E(U-B)/E(B-V) than the normal one. There is an evidence for mass segregation in this dynamically relaxed cluster with mass function slope is in agreement with the Salpeter value. NIR and Halpha excess support the existence of a young (< 2 Myr) stellar population of Herbig Ae/Be stars (> 3.0 M_sun) indicating a second episode of star formation in the cluster region. Using XMM-Newton observations, we found several X-ray sources in the cluster region but none of the Herbig Ae/Be stars is detected in X-rays. We compare the distribution of upper limits for Herbig Ae/Be stars with the X-ray distribution functions of the T-Tauri and the Herbig Ae/Be stars from previous studies, and found that the X-ray emission level of these Herbig Ae/Be stars is not more than L_X ~5.2 x 10^{30} erg/s, which is not significantly higher than for the T-Tauri stars. Therefore, X-ray emission from Herbig Ae/Be stars could be the result of either unresolved companion stars or a process similar to T-Tauri stars. We report an extended X-ray emission from the cluster region NGC 7419, with a total L_X estimate of ~ 1.8 x 10^31 erg/s/arcmin^2. Investigation of dust and CO map of 1 degree region around the cluster indicates the presence of a foreground dust cloud which is most likely associated with star forming region Sh2-154. This cloud harbors uniformly distributed pre main sequence stars (0.1-2.0M_sun) and the star formation in this cloud depend mostly upon the primordial fragmentation.
Recently acquired WFC3 UV (F275W and F336W) imaging mosaics under the Legacy Extragalactic UV Survey (LEGUS) combined with archival ACS data of M51 are used to study the young star cluster (YSC) population of this interacting system. Our newly extracted source catalogue contains 2834 cluster candidates, morphologically classified to be compact and uniform in colour, for which ages, masses and extinction are derived. In this first work we study the main properties of the YSC population of the whole galaxy, considering a mass-limited sample. Both luminosity and mass functions follow a power law shape with slope -2, but at high luminosities and masses a dearth of sources is observed. The analysis of the mass function suggests that it is best fitted by a Schechter function with slope -2 and a truncation mass at $1.00pm0.12times10^5 M_odot$. Through Monte Carlo simulations we confirm this result and link the shape of the luminosity function to the presence of a truncation in the mass function. A mass limited age function analysis, between 10 and 200 Myr, suggests that the cluster population is undergoing only moderate disruption. We observe little variation in the shape of the mass function at masses above $1times10^4 M_odot$, over this age range. The fraction of star formation happening in the form of bound clusters in M51 is $sim20%$ in the age range 10 to 100 Myr and little variation is observed over the whole range from 1 to 200 Myr.
We have performed mid-IR photometry of the young open cluster NGC 2264 using the images obtained with the Spitzer Space Telescope IRAC and MIPS instruments and present a normalized classification scheme of young stellar objects in various color-color diagrams to make full use of the information from multicolor photometry. These results are compared with the classification scheme based on the slope of the spectral energy distribution (SED). From the spatial distributions of Class I and II stars, we have identified two subclusterings of Class I objects in the CONE region of Sung et al. The disked stars in the other star forming region S MON are mostly Class II objects. These three regions show a distinct difference in the fractional distribution of SED slopes as well as the mean value of SED slopes. The fraction of stars with primordial disks is nearly flat between log m = 0.2 -- -0.5, and that of transition disks is very high for solar mass stars. In addition, we have derived a somewhat higher value of the primordial disk fraction for NGC 2264 members located below the main pre-main sequence locus (so-called BMS stars). This result supports the idea that BMS stars are young stars with nearly edge-on disks. We have also found that the fraction of primordial disks is very low near the most massive star S Mon and increases with distance from S Mon.