Do you want to publish a course? Click here

NGC 6067: a young and massive open cluster with high metallicity

128   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

NGC 6067 is a young open cluster hosting the largest population of evolved stars among known Milky Way clusters in the 50-150 Ma age range. It thus represents the best laboratory in our Galaxy to constrain the evolutionary tracks of 5-7 M$_{odot}$ stars. We have used high-resolution spectra of a large sample of bright cluster members (45), combined with archival photometry, to obtain accurate parameters for the cluster as well as stellar atmospheric parameters. We derive a distance of 1.78$pm$0.12 kpc, an age of 90$pm$20 Ma and a tidal radius of 14.8$^{6.8}_{3.2}$ arcmin. We estimate an initial mass above 5700 M$_{odot}$, for a present-day evolved population of two Cepheids, two A supergiants and 12 red giants with masses $approx$6 M$_{odot}$. We also determine chemical abundances of Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y and Ba for the red clump stars. We find a supersolar metallicity, [Fe/H]=+0.19$pm$0.05, and a homogeneus chemical composition, consistent with the Galactic metallicity gradient. The presence of a Li-rich red giant, star 276 with A(Li)=2.41, is also detected. An over-abundance of Ba is found, supporting the enhanced $s$-process. The ratio of yellow to red giants is much smaller than one, in agreement with models with moderate overshooting, but the properties of the cluster Cepheids do not seem consistent with current Padova models for supersolar metallicity.



rate research

Read More

NGC 2345 is a young open cluster hosting seven blue and red supergiants, low metallicity and a high fraction of Be stars which makes it a privileged laboratory to study stellar evolution. We aim to improve the determination of the cluster parameters and study the Be phenomenon. Our objective is also to characterise its seven evolved stars by deriving their atmospheric parameters and chemical abundances. We performed a complete analysis combining for the first time $ubvy$ photometry with spectroscopy as well as $Gaia$ Data Release 2. We obtained spectra with classification purposes for 76 stars and high-resolution spectroscopy for an in-depth analysis of the blue and red evolved stars. We identify a new red supergiant and 145 B-type likely members within a radius of 18.7$pm$1.2 arcmin, which implies an initial mass, $M_{textrm{cl}}approx$5200 M$_{odot}$. We find a distance of 2.5$pm$0.2 kpc for NGC 2345, placing it at $R_{textrm{GC}}$=10.2$pm$0.2 kpc. Isochrone fitting supports an age of 56$pm$13 Ma, implying masses around 6.5 M$_{odot}$ for the supergiants. A high fraction of Be stars ($approx$10$%$) is found. From the spectral analysis we estimate for the cluster an average $v_{textrm{rad}}$=$+58.6pm0.5$ kms$^{-1}$ and a low metallicity, [Fe/H]=$-$0.28$pm$0.07. We also have determined chemical abundances for Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y, and Ba for the evolved stars. The chemical composition of the cluster is consistent with that of the Galactic thin disc. One of the K supergiants, S50, is a Li-rich star, presenting an A(Li)$approx$2.1. An overabundance of Ba is found, supporting the enhanced $s$-process. NGC 2345 has a low metallicity for its Galactocentric distance, comparable to typical LMC stars. It is massive enough to serve as a testbed for theoretical evolutionary models for massive intermediate-mass stars.
We present multiwavelength linear polarimetric observations of 104 stars towards the region of young open cluster NGC 6823. The polarization towards NGC 6823 is dominated by foreground dust grains and we found the evidence for the presence of several layers of dust towards the line of sight. The first layer of dust is located approximately within 200 pc towards the cluster, which is much closer to the Sun than the cluster (~ 2.1 kpc). The radial distribution of the position angles for the member stars are found to show a systematic change while the polarization found to reduce towards the outer parts of the cluster and the average position angle of coronal region of the cluster is very close to the inclination of the Galactic parallel (~ 32 degree). The size distribution of the grains within NGC 6823 is similar to those in general interstellar medium. The patchy distribution of foreground dust grains are suggested to be mainly responsible for the both differential reddening and polarization towards NGC 6823. The majority of the observed stars do not show the evidence of intrinsic polarization in their light.
NGC 7067 is a young open cluster located in the direction between the first and the second Galactic quadrants and close to the Perseus spiral arm. This makes it useful for studies of the nature of the Milky Way spiral arms. Stromgren photometry taken with the Wide Field Camera at the Isaac Newton Telescope allowed us to compute individual physical parameters for the observed stars and hence to derive clusters physical parameters. Spectra from the 1.93-m telescope at the Observatoire de Haute-Provence helped to check and improve the results. We obtained photometry for 1233 stars, individual physical parameters for 515 and spectra for 9 of them. The 139 selected cluster members lead to a cluster distance of 4.4+/-0.4 kpc, with an age below log10(t(yr))=7.3 and a present Mass of 1260+/-160Msun. The morphology of the data reveals that the centre of the cluster is at (ra,dec)=(21:24:13.69,+48:00:39.2) J2000, with a radius of 6.1arcsec. Stromgren and spectroscopic data allowed us to improve the previous parameters available for the cluster in the literature.
Hydra spectra of 85 G-K dwarfs in the young cluster, M35, near the Li 6708 Angstrom line region are analyzed. From velocities and Gaia astrometry, 78 are likely single-star members which, combined with previous work, produces 108 members with T_eff ranging from 6150 to 4000 K as defined by multicolor, broad-band photometry, E(B-V ) = 0.20 and [Fe/H] = -0.15, though there are indications the metallicity may be closer to solar. A(Li) follows a well-delineated decline from 3.15 for the hottest stars to upper limits <= 1.0 among the coolest dwarfs. Contrary to earlier work, M35 includes single stars at systematically higher A(Li) than the mean cluster relation. This subset exhibits higher V_ROT than the more Li-depleted sample and, from photometric rotation periods, is dominated by stars classed as convective (C); all others are interface (I) stars. The cool, high-Li rapid rotators are consistent with models that consider simultaneously rapid rotation and radius inflation; rapid rotators hotter than the sun exhibit excess Li depletion, as predicted by the models. The A(Li) distribution with color and rotation period, when compared to the Hyades/Praesepe and the Pleiades, is consistent with gyrochronological analysis placing M35s age between the older M34 and younger Pleiades. However, the Pleiades display a more excessive range in A(Li) and rotation period than M35 on the low-Li, slow-rotation side of the distribution, with supposedly younger stars at a given T_eff in the Pleiades spinning slower, with A(Li) reduced by more than a factor of four compared to M35.
We have performed mid-IR photometry of the young open cluster NGC 2264 using the images obtained with the Spitzer Space Telescope IRAC and MIPS instruments and present a normalized classification scheme of young stellar objects in various color-color diagrams to make full use of the information from multicolor photometry. These results are compared with the classification scheme based on the slope of the spectral energy distribution (SED). From the spatial distributions of Class I and II stars, we have identified two subclusterings of Class I objects in the CONE region of Sung et al. The disked stars in the other star forming region S MON are mostly Class II objects. These three regions show a distinct difference in the fractional distribution of SED slopes as well as the mean value of SED slopes. The fraction of stars with primordial disks is nearly flat between log m = 0.2 -- -0.5, and that of transition disks is very high for solar mass stars. In addition, we have derived a somewhat higher value of the primordial disk fraction for NGC 2264 members located below the main pre-main sequence locus (so-called BMS stars). This result supports the idea that BMS stars are young stars with nearly edge-on disks. We have also found that the fraction of primordial disks is very low near the most massive star S Mon and increases with distance from S Mon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا