No Arabic abstract
Within the standard model of hierarchical galaxy formation in a {Lambda}CDM Universe, the environment of galaxies is expected to play a key role in driving galaxy formation and evolution. In this paper we investigate whether and how the gas metallicity and the star formation surface density ({Sigma}_SFR) depend on galaxy environment. To this end we analyse a sample of 1162 local, star-forming galaxies from the galaxy survey Mapping Nearby Galaxies at APO (MaNGA). Generally, both parameters do not show any significant dependence on environment. However, in agreement with previous studies, we find that low-mass satellite galaxies are an exception to this rule. The gas metallicity in these objects increases while their {Sigma}SFR decreases slightly with environmental density. The present analysis of MaNGA data allows us to extend this to spatially resolved properties. Our study reveals that the gas metallicity gradients of low-mass satellites flatten and their {Sigma}SFR gradients steepen with increasing environmental density. By extensively exploring a chemical evolution model, we identify two scenarios that are able to explain this pattern: metal-enriched gas accretion or pristine gas inflow with varying accretion timescales. The latter scenario better matches the observed {Sigma}SFR gradients, and is therefore our preferred solution. In this model, a shorter gas accretion timescale at larger radii is required. This suggests that outside-in quenching governs the star formation processes of low-mass satellite galaxies in dense environments.
We present a study on the stellar age and metallicity distributions for 1105 galaxies using the STARLIGHT software on MaNGA integral field spectra. We derive age and metallicity gradients by fitting straight lines to the radial profiles, and explore their correlations with total stellar mass M*, NUV-r colour and environments, as identified by both the large scale structure (LSS) type and the local density. We find that the mean age and metallicity gradients are close to zero but slightly negative, which is consistent with the inside-out formation scenario. Within our sample, we find that both the age and metallicity gradients show weak or no correlation with either the LSS type or local density environment. In addition, we also study the environmental dependence of age and metallicity values at the effective radii. The age and metallicity values are highly correlated with M* and NUV-r and are also dependent on LSS type as well as local density. Low-mass galaxies tend to be younger and have lower metallicity in low-density environments while high-mass galaxies are less affected by environment.
We study the gas phase metallicity (O/H) and nitrogen abundance gradients traced by star forming regions in a representative sample of 550 nearby galaxies in the stellar mass range $rm 10^9-10^{11.5} M_odot$ with resolved spectroscopic data from the SDSS-IV MaNGA survey. Using strong-line ratio diagnostics (R23 and O3N2 for metallicity and N2O2 for N/O) and referencing to the effective (half-light) radius ($rm R_e$), we find that the metallicity gradient steepens with stellar mass, lying roughly flat among galaxies with $rm log(M_star/M_odot) = 9.0$ but exhibiting slopes as steep as -0.14 dex $rm R_e^{-1}$ at $rm log(M_star/M_odot) = 10.5$ (using R23, but equivalent results are obtained using O3N2). At higher masses, these slopes remain typical in the outer regions of our sample ($rm R > 1.5 ~R_e$), but a flattening is observed in the central regions ($rm R < 1~ R_e$). In the outer regions ($rm R > 2.0 ~R_e$) we detect a mild flattening of the metallicity gradient in stacked profiles, although with low significance. The N/O ratio gradient provides complementary constraints on the average chemical enrichment history. Unlike the oxygen abundance, the average N/O profiles do not flatten out in the central regions of massive galaxies. The metallicity and N/O profiles both depart significantly from an exponential form, suggesting a disconnect between chemical enrichment and stellar mass surface density on local scales. In the context of inside-out growth of discs, our findings suggest that central regions of massive galaxies today have evolved to an equilibrium metallicity, while the nitrogen abundance continues to increase as a consequence of delayed secondary nucleosynthetic production.
In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass-metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-dependent metal outflow loading factor with stronger outflows at early times. The other scenario uses a time-dependent IMF slope with a steeper IMF at early times. In this work, we extend our study to investigate the radial profile of gas and stellar metallicity in local star-forming galaxies using spatially resolved spectroscopic data from the SDSS-IV MaNGA survey. We find that most galaxies show negative gradients in both gas and stellar metallicity with steeper gradients in stellar metallicity. The stellar metallicity gradient tend to be mass dependent with steeper gradients in more massive galaxies while no clear mass dependence is found for the gas metallicity gradient. Then we compare the observations with the predictions from a chemical evolution model of the radial profiles of gas and stellar metallicities. We confirm that the two scenarios proposed in our previous work are also required to explain the metallicity gradients. Based on these two scenarios we successfully reproduce the radial profiles of gas metallicity, stellar metallicity, stellar mass surface density, and star formation rate (SFR) surface density simultaneously. The origin of the negative gradient in stellar metallicity turns out to be driven by either radially dependent metal outflow or IMF slope. In contrast, the radial dependence of the gas metallicity is less constrained because of the degeneracy in model parameters.
We measured gas-phase metallicity, ionisation parameter and dust extinction for 1795 representative local star-forming galaxies using integral field spectroscopy from the SDSS-IV MaNGA survey. We self-consistently derive these quantities by comparing observed line fluxes with photoionisation models using a Bayesian framework. We also present the first comprehensive study of the [SIII]$lambdalambda$9069,9532 nebular lines, which have long been predicted to be ideal tracers of the ionisation parameter. Unfortunately, we find that current photoionisation models substantially over-predict [SIII] lines intensity, while broadly reproducing other observed optical line ratios. We discuss how to nonetheless make use of the information provided by [SIII] lines by setting a prior on the ionisation parameter. Following this approach, we derive spatially-resolved maps and radial profiles of metallicity and ionisation parameter. The metallicity radial profiles are comparable with previous works, with metallicity declining toward the outer parts and a flattening in the central regions, in agreement with infall models of galaxy formation, that predict that spiral discs build up through accretion of material, which leads to an inside-out growth. On the other hand, ionisation parameter radial profiles are flat for low-mass galaxies, while their slope becomes positive as galaxy mass increases. However, the ionisation parameter maps we obtain are clumpy, especially for low-mass galaxies. Ionisation parameter is tightly correlated with the H$alpha$ equivalent width [EW(H$alpha$)], following a nearly universal relation, which we attribute to the change of the spectral shape of ionising sources due to ageing of HII regions. We derive a positive correlation between ionisation parameter and metallicity at fixed EW(H$alpha$), in disagreement with previous theoretical works expecting an anti-correlation.
Gas-phase abundances and abundance gradients provide much information on past stellar generations, and are powerful probes of how galaxies evolve. Gas abundance gradients in galaxies have been studied as functions of galaxies mass and size individually, but have largely not been considered across the galaxy mass--size plane. Thus, we investigate gas-phase abundance gradients across this plane, using a sample of over 1000 galaxies selected from the MApping Nearby Galaxies at APO (MaNGA) spectroscopic survey. We find that gradients vary systematically such that above $10^{10}M_{odot}$, smaller galaxies display flatter gradients than larger galaxies at a given stellar mass. This mass--size behaviour cannot be explained by instrumental effects, nor is it simply a reflection of known trends between gradients and morphology. We explore multiple possibilities for a physical origin for this pattern, though further work is needed to establish a firm physical interpretation.