Do you want to publish a course? Click here

Quantum differentiability on quantum tori

85   0   0.0 ( 0 )
 Added by Edward McDonald
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide a full characterisation of quantum differentiability (in the sense of Connes) on quantum tori. We also prove a quantum integration formula which differs substantially from the commutative case.



rate research

Read More

We study the topic of quantum differentiability on quantum Euclidean $d$-dimensional spaces (otherwise known as Moyal $d$-spaces), and we find conditions that are necessary and sufficient for the singular values of the quantised differential to have decay $O(n^{-alpha})$ for $0 < alpha leq frac{1}{d}$. This result is substantially more difficult than the analogous problems for Euclidean space and for quantum $d$-tori.
We prove an analogue of Shnirelman, Zelditch and Colin de Verdieres Quantum Ergodicity Theorems in a case where there is no underlying classical ergodicity. The system we consider is the Laplacian with a delta potential on the square torus. There are two types of wave functions: old eigenfunctions of the Laplacian, which are not affected by the scatterer, and new eigenfunctions which have a logarithmic singularity at the position of the scatterer. We prove that a full density subsequence of the new eigenfunctions equidistribute in phase space. Our estimates are uniform with respect to the coupling parameter, in particular the equidistribution holds for both the weak and strong coupling quantizations of the point scatterer.
Evans-Hudson flows are constructed for a class of quantum dynamical semigroups with unbounded generator on UHF algebras, which appeared in cite{Ma}. It is shown that these flows are unital and covariant. Ergodicity of the flows for the semigroups associated with partial states is also discussed.
137 - Xudong Lai 2021
In this paper, we establish the full $L_p$ boundedness of noncommutative Bochner-Riesz means on two-dimensional quantum tori, which completely resolves an open problem raised in cite{CXY13} in the sense of the $L_p$ convergence for two dimensions. The main ingredients are sharper estimates of noncommutative Kakeya maximal functions and geometric estimates in the plain. We make the most of noncommutative theories of maximal/square functions, together with microlocal decompositions in both proofs of sharper estimates of Kakeya maximal functions and Bochner-Riesz means. We point out that even geometric estimates in the plain are different from that in the commutative case.
We consider the construction of twisted tensor products in the category of C*-algebras equipped with orthogonal filtrations and under certain assumptions on the form of the twist compute the corresponding quantum symmetry group, which turns out to be the generalised Drinfeld double of the quantum symmetry groups of the original filtrations. We show how these results apply to a wide class of crossed products of C*-algebras by actions of discrete groups. We also discuss an example where the hypothesis of our main theorem is not satisfied and the quantum symmetry group is not a generalised Drinfeld double.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا