We consider the construction of twisted tensor products in the category of C*-algebras equipped with orthogonal filtrations and under certain assumptions on the form of the twist compute the corresponding quantum symmetry group, which turns out to be the generalised Drinfeld double of the quantum symmetry groups of the original filtrations. We show how these results apply to a wide class of crossed products of C*-algebras by actions of discrete groups. We also discuss an example where the hypothesis of our main theorem is not satisfied and the quantum symmetry group is not a generalised Drinfeld double.
Given a C$^*$-correspondence $X$, we give necessary and sufficient conditions for the tensor algebra $mathcal T_X^+$ to be hyperrigid. In the case where $X$ is coming from a topological graph we obtain a complete characterization.
A Banach involutive algebra is called a Krein C*-algebra if there is a fundamental symmetry (an involutive automorphism of period 2) such that the C*-property is satisfied when the original involution is replaced with the new one obtained by composing the automorphism with the old involution. For a given fundamental symmetry, a Krein C*-algebra decomposes as a direct sum of an even part (a C*-algebra) and an odd part (a Hilbert C*-bimodule on the even part). Our goal here is to develop a spectral theory for commutative unital Krein C*-algebras when the odd part is a symmetric imprimitivity C*-bimodule over the even part and there exists an additional suitable exchange symmetry between the odd and even parts.
Let X be a space, intended as a possibly curved spacetime, and A a precosheaf of C*-algebras on X. Motivated by algebraic quantum field theory, we study the Kasparov and Theta-summable K-homology of A interpreting them in terms of the holonomy equivariant K-homology of the associated C*-dynamical system. This yields a characteristic class for K-homology cycles of A with values in the odd cohomology of X, that we interpret as a generalized statistical dimension.
Given two correspondences X and Y, we show that (under mild hypotheses) the Cuntz-Pimsner algebra of the tensor product of X and Y embeds as a certain subalgebra of the tensor product of the Cuntz-Pimsner algebra of X and the Cuntz=Pimsner algebra of Y. Furthermore, this subalgebra can be described in a natural way in terms of the gauge actions on the Cuntz-Pimsner algebras. We explore implications for graph algebras, crossed products by the integers, and crossed products by completely positive maps. We also give a new proof of a result of Kaliszewski and Quigg related to coactions on correspondences.
For every ADE Dynkin diagram, we give a realization, in terms of usual fusion algebras (graph algebras), of the algebra of quantum symmetries described by the associated Ocneanu graph. We give explicitly, in each case, the list of the corresponding twisted partition functions