Do you want to publish a course? Click here

Countably compact group topologies on the free Abelian group of size continuum (and a Wallace semigroup) from a selective ultrafilter

195   0   0.0 ( 0 )
 Added by Artur Tomita H
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We prove that the existence of a selective ultrafilter implies the existence of a countably compact Hausdorff group topology on the free Abelian group of size continuum. As a consequence, we show that the existence of a selective ultrafilter implies the existence of a Wallace semigroup (i.e., a countably compact both-sided cancellative topological semigroup which is not a topological group).



rate research

Read More

We prove that if there are $mathfrak c$ incomparable selective ultrafilters then, for every infinite cardinal $kappa$ such that $kappa^omega=kappa$, there exists a group topology on the free Abelian group of cardinality $kappa$ without nontrivial convergent sequences and such that every finite power is countably compact. In particular, there are arbitrarily large countably compact groups. This answers a 1992 question of D. Dikranjan and D. Shakhmatov.
Assuming the existence of $mathfrak c$ incomparable selective ultrafilters, we classify the non-torsion Abelian groups of cardinality $mathfrak c$ that admit a countably compact group topology. We show that for each $kappa in [mathfrak c, 2^mathfrak c]$ each of these groups has a countably compact group topology of weight $kappa$ without non-trivial convergent sequences and another that has convergent sequences. Assuming the existence of $2^mathfrak c$ selective ultrafilters, there are at least $2^mathfrak c$ non homeomorphic such topologies in each case and we also show that every Abelian group of cardinality at most $2^mathfrak c$ is algebraically countably compact. We also show that it is consistent that every Abelian group of cardinality $mathfrak c$ that admits a countably compact group topology admits a countably compact group topology without non-trivial convergent sequences whose weight has countable cofinality.
We study algebraic and topological properties of topological semigroups containing a copy of the bicyclic semigroup C(p,q). We prove that each topological semigroup S with pseudocompact square contains no dense copy of C(p,q). On the other hand, we construct a (consistent) example of a pseudocompact (countably compact) Tychonov semigroup containing a copy of C(p,q).
We introduce and study oscillator topologies on paratopological groups and define certain related number invariants. As an application we prove that a Hausdorff paratopological group $G$ admits a weaker Hausdorff group topology provided $G$ is 3-oscillating. A paratopological group $G$ is 3-oscillating (resp. 2-oscillating) provided for any neighborhood $U$ of the unity $e$ of $G$ there is a neighborhood $Vsubset G$ of $e$ such that $V^{-1}VV^{-1}subset UU^{-1}U$ (resp. $V^{-1}Vsubset UU^{-1}$). The class of 2-oscillating paratopological groups includes all collapsing, all nilpotent paratopological groups, all paratopological groups satisfying a positive law, all paratopological SIN-group and all saturated paratopological groups (the latter means that for any nonempty open set $Usubset G$ the set $U^{-1}$ has nonempty interior). We prove that each totally bounded paratopological group $G$ is countably cellular; moreover, every cardinal of uncountable cofinality is a precaliber of $G$. Also we give an example of a saturated paratopological group which is not isomorphic to its mirror paratopological group as well as an example of a 2-oscillating paratopological group whose mirror paratopological group is not 2-oscillating.
(1) Every infinite, Abelian compact (Hausdorff) group K admits 2^|K|-many dense, non-Haar-measurable subgroups of cardinality |K|. When K is nonmetrizable, these may be chosen to be pseudocompact. (2) Every infinite Abelian group G admits a family A of 2^2^|G|-many pairwise nonhomeomorphic totally bounded group topologies such that no nontrivial sequence in G converges in any of the topologies T in A. (For some G one may arrange w(G,T) < 2^|G| for some T in A.) (3) Every infinite Abelian group $G$ admits a family B of 2^2^|G|-many pairwise nonhomeomorphic totally bounded group topologies, with w(G,T) = 2^|G| for all T in B, such that some fixed faithfully indexed sequence in G converges to 0_G in each T in B.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا