Do you want to publish a course? Click here

Fragile-to-Strong Crossover, growing length scales, and dynamic heterogeneity in Wigner Glasses

73   0   0.0 ( 0 )
 Added by Hyun Woo Cho
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Colloidal particles, which are ubiquitous, have become ideal testing grounds for the structural glass transition (SGT) theories. In these systems glassy behavior is manifested as the density of the particles is increased. Thus, soft colloidal particles with varying degree of softness capture diverse glass forming properties, observed normally in molecular glasses. By performing Brownian dynamics simulations for a binary mixture of micron-sized charged colloidal suspensions, known to form Wigner glasses, we show that by tuning the softness of the potential, achievable by changing the monovalent salt concentration, there is a continuous transition between fragile to strong behavior. Remarkably, this is found in a system where the well characterized potential between the colloidal particles is isotropic. We also show that the predictions of the random first order transition (RFOT) theory quantitatively describes the universal features such as the growing correlation length, $xisim (phi_K/phi - 1)^{- u}$ with $ u = 2/3$ where $phi_K$, the analogue of the Kauzmann temperature, depends on the salt concentration. As anticipated by the RFOT predictions, we establish a causal relationship between the growing correlation length and a steep increase in the relaxation time and dynamic heterogeneity. The broad range of fragility observed in Wigner glasses is used to draw analogies with molecular glasses. The large variations in the fragility is found only when the temperature dependence of the viscosity is examined for a large class of diverse glass forming materials. In sharp contrast, this is vividly illustrated in a single system that can be experimentally probed. Our work also shows that the RFOT predictions are accurate in describing the dynamics over the entire density range, regardless of the fragility of the glasses, implying that the physics describing the SGT is universal.



rate research

Read More

We examined dynamic heterogeneity in a model tetrahedral network glass-forming liquid. We used four-point correlation functions to extract dynamic correlation lengths xi_4^a(t) and susceptibilities chi_4^a(t) corresponding to structural relaxation on two length scales a. One length scale corresponds to structural relaxation at nearest neighbor distances and the other corresponds to relaxation of the tetrahedral structure. We find that the dynamic correlation length xi_4^{a} grows much slower with increasing relaxation time than for model fragile glass formers. We also find that chi_4^a ~ (xi_4^a)^z for a range of temperatures, but z < 3 at the lowest temperatures examined in this study. However, we do find evidence that the temperature where Stokes-Einstein violation begins marks a temperature where there is a change in the character of dynamically heterogeneous regions. Throughout the paper, we contrast the structure and dynamics of a strong glass former with that of a representative fragile glass former.
Using X- ray photon correlation spectroscopy measurements on gold nanoparticles embedded in polymethylmethacrylate we provide evidence for existence of an intrinsic length scale for dynamic heterogeneity in polymer nanocomposites similar to that in other soft materials.We also show how the dynamics varies in a complex way with various parameters.
164 - Takahiro Hatano 2009
We simulate a relaxation process of non-brownian particles in a sheared viscous medium; the small shear strain is initially applied to a system, which then undergoes relaxation. The relaxation time and the correlation length are estimated as functions of density, which algebraically diverge at the jamming density. This implies that the relaxation time can be scaled by the correlation length using the dynamic critical exponent, which is estimated as 4.6(2). It is also found that shear stress undergoes power-law decay at the jamming density, which is reminiscent of critical slowing down.
Dynamical heterogeneities -- strong fluctuations near the glass transition -- are believed to be crucial to explain much of the glass transition phenomenology. One possible hypothesis for their origin is that they emerge from soft (Goldstone) modes associated with a broken continuous symmetry under time reparametrizations. To test this hypothesis, we use numerical simulation data from four glass-forming models to construct coarse grained observables that probe the dynamical heterogeneity, and decompose the fluctuations of these observables into two transverse components associated with the postulated time-fluctuation soft modes and a longitudinal component unrelated to them. We find that as temperature is lowered and timescales are increased, the time reparametrization fluctuations become increasingly dominant, and that their correlation volumes grow together with the correlation volumes of the dynamical heterogeneities, while the correlation volumes for longitudinal fluctuations remain small.
Hybrid glasses connect emerging fields of metal-organic frameworks (MOFs) with the glass-formation, amorphization, and melting processes of these structurally diverse and chemically versatile systems. Most zeolites, including MOFs, amorphize around the glass transition, devitrifying and then melting at much higher temperatures. The relationship between the two processes has so far not been investigated. Herein we show how heating first results in a low density perfect glass, following an order-order transition, leading to a super-strong liquid of low fragility that dynamically controls MOF collapse. A subsequent order-disorder transition creates a high density liquid of greater fragility. After crystallization and melting, subsequent cooling results in a stable glass virtually identical to the high density phase. Furthermore, the wide-ranging melting temperatures of different MOFs suggest these can be differentiated by topology. Our research provides new insight into the stability and functionality of these novel ductile crystalline materials, including the possibility of melt-casting MOFs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا