No Arabic abstract
We report on the experimental investigation of the properties of the eigenvalues and wavefunctions and the fluctuation properties of the scattering matrix of closed and open billiards, respectively, of which the classical dynamics undergoes a transition from integrable via almost integrable to fully chaotic. To realize such a system we chose a billiard with a 60 degree sector shape of which the classical dynamics is integrable, and introduced circular scatterers of varying number, size and position. The spectral properties of generic quantum systems of which the classical counterpart is either integrable or chaotic are universal and well understood. If, however, the classical dynamics is pseudo-integrable or almost-integrable, they exhibit a non-universal intermediate statistics, for which analytical results are known only in a few cases, like, e.g., if it corresponds to semi-Poisson statistics. Since the latter is, above all, clearly distinguishable from those of integrable and chaotic systems our aim was to design a billiard with these features which indeed is achievable by adding just one scatterer of appropriate size and position to the sector billiard. We demonstrate that, while the spectral properties of almost-integrable billiards are sensitive to the classical dynamics, this is not the case for the distribution of the wavefunction components, which was analysed in terms of the strength distribution, and the fluctuation properties of the scattering matrix which coincide with those of typical, fully chaotic systems.
A crucial result in quantum chaos, which has been established for a long time, is that the spectral properties of classically integrable systems generically are described by Poisson statistics whereas those of time-reversal symmetric, classically chaotic systems coincide with those of random matrices from the Gaussian orthogonal ensemble (GOE). Does this result hold for two-dimensional Dirac material systems? To address this fundamen- tal question, we investigate the spectral properties in a representative class of graphene billiards with shapes of classically integrable circular-sector billiards. Naively one may expect to observe Poisson statistics, which is indeed true for energies close to the band edges where the quasiparticle obeys the Schrodinger equation. However, for energies near the Dirac point, where the quasiparticles behave like massless Dirac fermions, Pois- son statistics is extremely rare in the sense that it emerges only under quite strict symmetry constraints on the straight boundary parts of the sector. An arbitrarily small amount of imperfection of the boundary results in GOE statistics. This implies that, for circular sector confinements with arbitrary angle, the spectral properties will generically be GOE. These results are corroborated by extensive numerical computation. Furthermore, we provide a physical understanding for our results.
The relation between the Shannon entropy and avoided crossings is investigated in dielectric microcavities. The Shannon entropy of probability density for eigenfunctions in an open elliptic billiard as well as a closed quadrupole billiard increases as the center of avoided crossing is approached. These results are opposite to those of atomic physics for electrons. It is found that the collective Lamb shift of the open quantum system and the symmetry breaking in the closed chaotic quantum system give equivalent effects to the Shannon entropy.
Uncertainty relation is not only of fundamental importance to quantum mechanics, but also crucial to the quantum information technology. Recently, majorization formulation of uncertainty relations (MURs) have been widely studied, ranging from two measurements to multiple measurements. Here, for the first time, we experimentally investigate MURs for two measurements and multiple measurements in the high-dimensional systems, and study the intrinsic distinction between direct-product MURs and direct-sum MURs. The experimental results reveal that by taking different nonnegative Schur-concave functions as uncertainty measure, the two types of MURs have their own particular advantages, and also verify that there exists certain case where three-measurement majorization uncertainty relation is much stronger than the one obtained by summing pairwise two-measurement uncertainty relations. Our work not only fills the gap of experimental studies of majorization uncertainty relations, but also represents an advance in quantitatively understanding and experimental verification of majorization uncertainty relations which are universal and capture the essence of uncertainty in quantum theory.
We report the experimental implementation of the Dicke model in the semiclassical approximation, which describes a large number of two-level atoms interacting with a single-mode electromagnetic field in a perfectly reflecting cavity. This is managed by making use of two non-linearly coupled active, synthetic LC circuits, implemented by means of analog electrical components. The simplicity and versatility of our platform allows us not only to experimentally explore the coexistence of regular and chaotic trajectories in the Dicke model but also to directly observe the so-called ground-state and excited-state ``quantum phase transitions. In this analysis, the trajectories in phase space, Lyapunov exponents and the recently introduced Out-of-Time-Order-Correlator (OTOC) are used to identify the different operating regimes of our electronic device. Exhaustive numerical simulations are performed to show the quantitative and qualitative agreement between theory and experiment.
We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.