No Arabic abstract
We use 1837 DA white dwarfs with high signal to noise ratio spectra and Gaia parallaxes to verify the absolute calibration and extinction coefficients for the Galaxy Evolution Explorer (GALEX). We use white dwarfs within 100 pc to verify the linearity correction to the GALEX data. We find that the linearity correction is valid for magnitudes brighter than 15.95 and 16.95 for the Far Ultraviolet (FUV) and Near Ultraviolet (NUV) bands, respectively. We also use DA white dwarfs beyond 250 pc to calculate extinction coefficients in the FUV and NUV bands; $R_{rm FUV}=8.01 pm 0.07$ and $R_{rm NUV}=6.72 pm 0.04$. These are consistent with the predicted extinction coefficients for Milky Way type dust in the FUV, but smaller than predictions in the NUV. With well understood optical spectra and state-of-the-art model atmosphere analysis, these white dwarfs currently provide the best constraints on the extinction coefficients for the GALEX data.
Interstellar extinction in ultraviolet is the most severe in comparison with optical and infrared wavebands and a precise determination plays an important role in correctly recovering the ultraviolet brightness and colors of objects. By finding the observed bluest colors at given effective temperature and metallicity range of dwarf stars, stellar intrinsic colors, $C^0_{rm B,V}$, $C^0_{rm NUV,B}$, $C^0_{rm FUV,B}$ and $C^0_{rm FUV,NUV}$, are derived according to the stellar parameters from the LAMOST spectroscopic survey and photometric results from the $GALEX$ and APASS surveys. With the derived intrinsic colors, the ultraviolet color excesses are calculated for about 25,000 A- and F-type dwarf stars. Analysis of the color excess ratios yields the extinction law related to the $GALEX$ UV bands: $E_{{rm NUV,B}}$/$E_{{rm B,V}} = 3.77$, $E_{{rm FUV,B}}$/$E_{{rm B,V}} = 3.39$, $E_{{rm FUV,NUV}}$/$E_{{rm B,V}} = -0.38$. The results agree very well with previous works in the $NUV$ band and in general with the extinction curve derived by Fitzpatrick (1999) for $R_{rm V}=3.35$.
High-field magnetic white dwarfs have been long suspected to be the result of stellar mergers. However, the nature of the coalescing stars and the precise mechanism that produces the magnetic field are still unknown. Here we show that the hot, convective, differentially rotating corona present in the outer layers of the remnant of the merger of two degenerate cores is able to produce magnetic fields of the required strength that do not decay for long timescales. We also show, using an state-of-the-art Monte Carlo simulator, that the expected number of high-field magnetic white dwarfs produced in this way is consistent with that found in the solar neighborhood.
The contribution of white dwarfs of the different Galactic populations to the stellar content of our Galaxy is only poorly known. Some authors claim a vast population of halo white dwarfs, which would be in accordance with some investigations of the early phases of Galaxy formation claiming a top-heavy initial-mass-function. Here, I present a model of the population of white dwarfs in the Milky Way based on observations of the local white dwarf sample and a standard model of Galactic structure. This model will be used to estimate the space densities of thin disc, thick disc and halo white dwarfs and their contribution to the baryonic mass budget of the Milky Way. One result of this investigation is that white dwarfs of the halo population contribute a large fraction of the Galactic white dwarf number count, but they are not responsible for the lions share of stellar mass in the Milky Way. Another important result is the substantial contribution of the - often neglected - population of thick disc white dwarfs. Misclassification of thick disc white dwarfs is responsible for overestimates of the halo population in previous investigations.
We identify two new tidally distorted white dwarfs (WDs), SDSS J174140.49+652638.7 and J211921.96-001825.8 (hereafter J1741 and J2119). Both stars are extremely low mass (ELM, < 0.2 Msun) WDs in short-period, detached binary systems. High-speed photometric observations obtained at the McDonald Observatory reveal ellipsoidal variations and Doppler beaming in both systems; J1741, with a minimum companion mass of 1.1 Msun, has one of the strongest Doppler beaming signals ever observed in a binary system (0.59 pm 0.06% amplitude). We use the observed ellipsoidal variations to constrain the radius of each WD. For J1741, the stars radius must exceed 0.074 Rsun. For J2119, the radius exceeds 0.10 Rsun. These indirect radius measurements are comparable to the radius measurements for the bloated WD companions to A-stars found by the Kepler spacecraft, and they constitute some of the largest radii inferred for any WD. Surprisingly, J1741 also appears to show a 0.23 pm 0.06% reflection effect, and we discuss possible sources for this excess heating. Both J1741 and J2119 are strong gravitational wave sources, and the time-of-minimum of the ellipsoidal variations can be used to detect the orbital period decay. This may be possible on a timescale of a decade or less.
Double white dwarf (double-WD) binaries may merge within a Hubble time and produce high-mass WDs. Compared to other high-mass WDs, the double-WD merger products have higher velocity dispersion because they are older. With the power of Gaia data, we show strong evidence for double-WD merger products among high-mass WDs by analyzing the transverse-velocity distribution of more than a thousand high-mass WDs (0.8--1.3 $M_odot$). We estimate that the fraction of double-WD merger products in our sample is about 20 %. We also obtain a precise double-WD merger rate and its mass dependence. Our merger rate estimates are close to binary population synthesis results and support the idea that double-WD mergers may contribute to a significant fraction of type Ia supernovae.