Do you want to publish a course? Click here

The critical nature of the Ni spin state in doped NdNiO$_2$

189   0   0.0 ( 0 )
 Added by Mi Jiang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superconductivity with $T_c approx 15K$ was recently found in doped NdNiO$_2$. The Ni$^{1+}$O$_2$ layers are expected to be Mott insulators so hole doping should produce Ni$^{2+}$ with $S=1$, incompatible with robust superconductivity. We show that the NiO$_2$ layers fall inside a ``critical region where the large $pd$ hybridization favors a singlet $^1!A_1$ hole-doped state like in CuO$_2$. However, we find that the superexchange is about one order smaller than in cuprates, thus a magnon ``glue is very unlikely and another mechanism needs to be found.



rate research

Read More

Inelastic neutron scattering measurements on Ba(Fe$_{0.963}$Ni$_{0.037}$)$_2$As$_2$ manifest a neutron spin resonance in the superconducting state with anisotropic dispersion within the Fe layer. Whereas the resonance is sharply peaked at Q$_{AFM}$ along the orthorhombic a axis, the resonance disperses upwards away from Q$_{AFM}$ along the b axis. In contrast to the downward dispersing resonance and hour-glass shape of the spin excitations in superconducting cuprates, the resonance in electron-doped BaFe$_2$As$_2$ compounds possesses a magnon-like upwards dispersion.
172 - Gang Xu , Haijun Zhang , Xi Dai 2008
We show, from first-principles calculations, that the hole-doped side of FeAs-based compounds is different from its electron-doped counterparts. The electron side is characterized as Fermi surface nesting, and SDW-to-NM quantum critical point (QCP) is realized by doping. For the hole-doped side, on the other hand, orbital-selective partial orbital ordering develops together with checkboard antiferromagnetic (AF) ordering without lattice distortion. A unique SDW-to-AF QCP is achieved, and $J_2$=$J_1/2$ criteria (in the approximate $J_1&J_2$ model) is satisfied. The observed superconductivity is located in the vicinity of QCP for both sides.
165 - J. Zaanen 2009
Recently it was discovered that the jump in the specific heat at the superconducting transition in pnictide superconductors is proportional to the superconducting transition temperature to the third power, with the superconducting transition temperature varying from 2 to 25 Kelvin including underdoped and overdoped cases. Relying on standard scaling notions for the thermodynamics of strongly interacting quantum critical states, it is pointed out that this behavior is consistent with a normal state that is a quantum critical metal undergoing a pairing instability.
We have studied Ni-substitution effect in LaFe$_{1-x}$Ni$_{x}$AsO ($0leq x leq0.1$) by the measurements of x-ray diffraction, electrical resistivity, magnetic susceptibility, and heat capacity. The nickel doping drastically suppresses the resistivity anomaly associated with spin-density-wave ordering in the parent compound. Superconductivity emerges in a narrow region of $0.03leq x leq0.06$ with the maximum $T_c$ of 6.5 K at $x$=0.04, where enhanced magnetic susceptibility shows up. The upper critical field at zero temperature is estimated to exceed the Pauli paramagnetic limit. The much lowered $T_c$ in comparison with LaFeAsO$_{1-x}$F$_{x}$ system is discussed.
195 - L. J. Li , Q. B. Wang , Y. K. Luo 2008
A series of 122 phase BaFe$_{2-x}$Ni$_x$As$_2$ ($x$ = 0, 0.055, 0.096, 0.18, 0.23) single crystals were grown by self flux method and a dome-like Ni doping dependence of superconducting transition temperature is discovered. The transition temperature $T_c^{on}$ reaches a maximum of 20.5 K at $x$ = 0.096, and it drops to below 4 K as $x$ $geq$ 0.23. The negative thermopower in the normal state indicates that electron-like charge carrier indeed dominates in this system. This Ni-doped system provides another example of superconductivity induced by electron doping in the 122 phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا