Do you want to publish a course? Click here

Pulsed electron spin resonance spectroscopy in the Purcell regime

92   0   0.0 ( 0 )
 Added by Vishal Ranjan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

When spin relaxation is governed by spontaneous emission of a photon into the resonator used for signal detection (the Purcell effect), the relaxation time $T_1$ depends on the spin-resonator frequency detuning $delta$ and coupling constant $g$. We analyze the consequences of this unusual dependence for the amplitude and temporal shape of a spin-echo in a number of different experimental situations. When the coupling $g$ is distributed inhomogeneously, we find that the effective spin-echo relaxation time measured in a saturation recovery sequence strongly depends on the parameters of the detection echo. When the spin linewidth is larger than the resonator bandwidth, the Fourier components of the echo relax with different characteristic times, which implies that the temporal shape of the echo becomes dependent on the repetition time of the experiment. We provide experimental evidence of these effects with an ensemble of donor spins in silicon at millikelvin temperatures measured by a superconducting micro-resonator.



rate research

Read More

We discuss the design and implementation of thin film superconducting coplanar waveguide micro- resonators for pulsed ESR experiments. The performance of the resonators with P doped Si epilayer samples is compared to waveguide resonators under equivalent conditions. The high achievable filling factor even for small sized samples and the relatively high Q-factor result in a sensitivity that is superior to that of conventional waveguide resonators, in particular to spins close to the sample surface. The peak microwave power is on the order of a few microwatts, which is compatible with measurements at ultra low temperatures. We also discuss the effect of the nonuniform microwave magnetic field on the Hahn echo power dependence.
X-band electron spin resonance (ESR) spectroscopy has been performed for gold nanorods (AuNRs) of four different sizes covered with a diamagnetic stabilizing component, cetyltrimethylammmonium bromide. The ESR spectra show ferromagnetic features such as hysteresis and resonance field shift, depending on the size of the AuNRs. In addition, the ferromagnetic transition is indicated by an abrupt change in the spectra of the two smallest AuNRs studied. A large g-value in the paramagnetic region suggests that the ferromagnetism in the AuNRs originates from strong spin-orbit interaction.
We demonstrate electron spin polarization detection and electron paramagnetic resonance (EPR) spectroscopy using a direct current superconducting quantum interference device (dc-SQUID) magnetometer. Our target electron spin ensemble is directly glued on the dc-SQUID magnetometer that detects electron spin polarization induced by a external magnetic field or EPR in micrometer-sized area. The minimum distinguishable number of polarized spins and sensing volume of the electron spin polarization detection and the EPR spectroscopy are estimated to be $sim$$10^6$ and $sim$$10^{-10}$ $mathrm{cm}^{3}$ ($sim$0.1 pl), respectively.
An all-electrical spin resonance effect in a GaAs few-electron double quantum dot is investigated experimentally and theoretically. The magnetic field dependence and absence of associated Rabi oscillations are consistent with a novel hyperfine mechanism. The resonant frequency is sensitive to the instantaneous hyperfine effective field, and the effect can be used to detect and create sizable nuclear polarizations. A device incorporating a micromagnet exhibits a magnetic field difference between dots, allowing electrons in either dot to be addressed selectively.
A nitrogen-vacancy (NV) center in diamond is a promising sensor for nanoscale magnetic sensing. Here we report electron spin resonance (ESR) spectroscopy using a single NV center in diamond. First, using a 230 GHz ESR spectrometer, we performed ensemble ESR of a type-Ib sample crystal and identified a substitutional single nitrogen impurity as a major paramagnetic center in the sample crystal. Then, we carried out free-induction decay and spin echo measurements of the single NV center to study static and dynamic properties of nanoscale bath spins surrounding the NV center. We also measured ESR spectrum of the bath spins using double electron-electron resonance spectroscopy with the single NV center. The spectrum analysis of the NV-based ESR measurement identified that the detected spins are the nitrogen impurity spins. The experiment was also performed with several other single NV centers in the diamond sample and demonstrated that the properties of the bath spins are unique to the NV centers indicating the probe of spins in the microscopic volume using NV-based ESR. Finally, we discussed the number of spins detected by the NV-based ESR spectroscopy. By comparing the experimental result with simulation, we estimated the number of the detected spins to be $leq$ 50 spins.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا