Do you want to publish a course? Click here

Polarimetry of binary systems: polars, magnetic CVs, XRBs

77   0   0.0 ( 0 )
 Added by Tariq Shahbaz
 Publication date 2019
  fields Physics
and research's language is English
 Authors Tariq Shahbaz




Ask ChatGPT about the research

Polarimetry provides key physical information on the properties of interacting binary systems, sometimes difficult to obtain by any other type of observation. Indeed, radiation processes such as scattering by free electrons in the hot plasma above accretion discs, cyclotron emission by mildly relativistic electrons in the accretion shocks on the surface of highly magnetic white dwarfs and the optically thin synchrotron emission from jets can be observed. In this review, I will illustrate how optical/near-infrared polarimetry allows one to estimate magnetic field strengths and map the accretion zones in magnetic Cataclysmic Variables as well as determine the location and nature of jets and ejection events in X-ray binaries.



rate research

Read More

213 - K. Beuermann 2020
We report on the X-ray observations of the eclipsing polar HY Eri (RX J0501-0359), along with its photometric, spectrophotometric, and spectropolarimetric optical variations, collected over 30 years. With an orbital period of 2.855 h, HY Eri falls near the upper edge of the 2-3 h period gap. After 2011, the system went into a prolonged low state, continuing to accrete at a low level. We present an accurate alias-free long-term orbital ephemeris and report a highly significant period change by 10 ms that took place over the time interval from 2011 to 2018. We acquired a high-quality eclipse spectrum that shows the secondary star as a dM5-6 dwarf at a distance $d = 1050 pm 110$ pc. Based on phase-resolved cyclotron and Zeeman spectroscopy, we identify the white dwarf (WD) in HY Eri as a two-pole accretor with nearly opposite accretion spots of 28 and 30 MG. The Zeeman analysis of the low state spectrum reveals a complex magnetic field structure, which we fit by a multipole model. We detected narrow emission lines from the irradiated face of the secondary star, of which Mg I $lambda 5170$ with a radial velocity amplitude of $K_2 = 139 pm 10$ km/s (90% confidence) tracks the secondary more reliably than the narrow H$alpha$ line. Based on the combined dynamical analysis and spectroscopic measurement of the angular radius of the WD, we obtain a primary mass of $M_1 = 0.42 pm 0.05$ $M_odot$ (90% confidence errors), identifying it as a probable He WD or hybrid HeCO WD. The secondary is a main sequence star of $M_2 = 0.24 pm 0.04$ $M_odot$ that seems to be slightly inflated. The large distance of HY Eri and the lack of similar systems suggest a very low space density of polars with low-mass primary. According to current theory, these systems are destroyed by induced runaway mass transfer, suggesting that HY Eri may be doomed to destruction.
X-ray binary systems are very popular objects for astrophysical investigations. Compact objects in these systems are neutron stars, white dwarfs and black holes. Neutron stars and white dwarfs can have intrinsic magnetic fields. There is well known, famous theorem about absence of intrinsic magnetic fields of black holes. But magnetic field can exist in the accretion disk around a black hole. We present here the real estimates of the magnetic field strength at the radius of innermost stable orbit in an accretion disk of stellar mass black holes.
The disc instability model (DIM) has been very successful in explaining the dwarf nova outbursts observed in cataclysmic variables. When, as in intermediate polars (IP), the accreting white dwarf is magnetized, the disc is truncated at the magnetospheric radius, but for mass-transfer rates corresponding to the thermal-viscous instability such systems should still exhibit dwarf-nova outbursts. Yet, the majority of intermediate polars in which the magnetic field is not large enough to completely disrupt the accretion disc, seem to be stable, and the rare observed outbursts, in particular in systems with long orbital periods, are much shorter than normal dwarf-nova outbursts. We investigate the predictions of the disc instability model for intermediate polars in order to determine which of the observed properties of these systems can be explained by the DIM. We use our numerical code for the time evolution of accretion discs, modified to include the effects of the magnetic field, with constant or variable mass transfer from the secondary star. We show that intermediate polars have mass transfer low enough and magnetic fields large enough to keep the accretion disc stable on the cold equilibrium branch. We show that the infrequent and short outbursts observed in long period systems, such as e.g., TV Col, cannot be attributed to the thermal-viscous instability of the accretion disc, but instead have to be triggered by an enhanced mass-transfer from the secondary, or, more likely, by some instability coupling the white dwarf magnetic field with that generated by the magnetorotational instability operating in the accretion disc. Longer outbursts (a few days) could result from the disc instability.
408 - Gavin Ramsay 2017
We consider the parallaxes of sixteen cataclysmic variables and related objects that are included in the TGAS catalogue, which is part of the Gaia first data release, and compare these with previous parallax measurements. The parallax of the dwarf nova SS Cyg is consistent with the parallax determination made using the VLBI, but with only one of the analyses of the HST Fine Guidance Sensor (FGS) observations of this system. In contrast, the Gaia parallaxes of V603 Aql and RR Pic are broadly consistent, but less precise than the HST/FGS measurements. The Gaia parallaxes of IX Vel, V3885 Sgr, and AE Aqr are consistent with, but much more accurate than the Hipparcos measurements. We take the derived Gaia distances and find that absolute magnitudes of outbursting systems show a weak correlation with orbital period. For systems with measured X-ray fluxes we find that the X-ray luminosity is a clear indicator of whether the accretion disc is in the hot and ionised or cool and neutral state. We also find evidence for the X-ray emission of both low and high state discs correlating with orbital period, and hence the long-term average accretion rate. The inferred mass accretion rates for the nova-like variables and dwarf novae are compared with the critical mass accretion rate predicted by the Disk Instability Model. While we find agreement to be good for most systems there appears to be some uncertainty in the system parameters of SS Cyg. Our results illustrate how future Gaia data releases will be an extremely valuable resource in mapping the evolution of cataclysmic variables.
We improved the discless accretion models of Wynn & King, considering the effects of the changing aspect due to the white dwarf spin and the variable feeding intensity caused by the asynchronism, and set up a more general spot model which is not sensitive to the different forms of these effects and can be applied for the period analysis of the optical and X-ray light curve. The spot model can produce the power spectra compatible with the observations, and its simulations limit the ratio $P_{spin}/P_{orb}<2$ between the powers at the white dwarf spin and the binary orbital frequencies, which is a strong criterion for identification of periods. Then we recognize the periods for CD Ind, BY Cam and 1RXS J083842.1-282723. The spot model reveals a complex accretion geometry in the asynchronous polars, which may indicate that the complex magnetic field causes their asynchronism. We think 1RXS J083842.1-282723 is a pre-polars because of its highest asynchronism and stable light curve. Giving the unstable accretion process in asynchronous polars, the period analysis of the long-term light curve will make the orbital signal prominent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا