Do you want to publish a course? Click here

Distances of CVs and related objects derived from Gaia Data Release 1

409   0   0.0 ( 0 )
 Added by Gavin Ramsay
 Publication date 2017
  fields Physics
and research's language is English
 Authors Gavin Ramsay




Ask ChatGPT about the research

We consider the parallaxes of sixteen cataclysmic variables and related objects that are included in the TGAS catalogue, which is part of the Gaia first data release, and compare these with previous parallax measurements. The parallax of the dwarf nova SS Cyg is consistent with the parallax determination made using the VLBI, but with only one of the analyses of the HST Fine Guidance Sensor (FGS) observations of this system. In contrast, the Gaia parallaxes of V603 Aql and RR Pic are broadly consistent, but less precise than the HST/FGS measurements. The Gaia parallaxes of IX Vel, V3885 Sgr, and AE Aqr are consistent with, but much more accurate than the Hipparcos measurements. We take the derived Gaia distances and find that absolute magnitudes of outbursting systems show a weak correlation with orbital period. For systems with measured X-ray fluxes we find that the X-ray luminosity is a clear indicator of whether the accretion disc is in the hot and ionised or cool and neutral state. We also find evidence for the X-ray emission of both low and high state discs correlating with orbital period, and hence the long-term average accretion rate. The inferred mass accretion rates for the nova-like variables and dwarf novae are compared with the critical mass accretion rate predicted by the Disk Instability Model. While we find agreement to be good for most systems there appears to be some uncertainty in the system parameters of SS Cyg. Our results illustrate how future Gaia data releases will be an extremely valuable resource in mapping the evolution of cataclysmic variables.



rate research

Read More

For the vast majority of stars in the second Gaia data release, reliable distances cannot be obtained by inverting the parallax. A correct inference procedure must instead be used to account for the nonlinearity of the transformation and the asymmetry of the resulting probability distribution. Here we infer distances to essentially all 1.33 billion stars with parallaxes published in the second gaia data release. This is done using a weak distance prior that varies smoothly as a function of Galactic longitude and latitude according to a Galaxy model. The irreducible uncertainty in the distance estimate is characterized by the lower and upper bounds of an asymmetric confidence interval. Although more precise distances can be estimated for a subset of the stars using additional data (such as photometry), our goal is to provide purely geometric distance estimates, independent of assumptions about the physical properties of, or interstellar extinction towards, individual stars. We analyse the characteristics of the catalogue and validate it using clusters. The catalogue can be queried on the Gaia archive using ADQL at http://gea.esac.esa.int/archive/ and downloaded from http://www.mpia.de/~calj/gdr2_distances.html .
64 - T. Kupfer , V. Korol , S. Shah 2018
Ultracompact binaries with orbital periods less than a few hours will dominate the gravitational wave signal in the mHz regime. Until recently, 10 systems were expected have a predicted gravitational wave signal strong enough to be detectable by the Laser Interferometer Space Antenna (LISA), the so-called `verification binaries. System parameters, including distances, are needed to provide an accurate prediction of the expected gravitational wave strength to be measured by LISA. Using parallaxes from {sl Gaia} Data Release 2 we calculate signal-to-noise ratios (SNR) for $approx$50 verification binary candidates. We find that 11 binaries reach a SNR$geq$20, two further binaries reaching a SNR$geq$5 and three more systems are expected to have a SNR$approx$5 after four years integration with LISA. For these 16 systems we present predictions of the gravitational wave amplitude ($mathcal{A}$) and parameter uncertainties from Fisher information matrix on the amplitude ($mathcal{A}$) and inclination ($iota$).
Stellar distances constitute a foundational pillar of astrophysics. The publication of 1.47 billion stellar parallaxes from Gaia is a major contribution to this. Yet despite Gaias precision, the majority of these stars are so distant or faint that their fractional parallax uncertainties are large, thereby precluding a simple inversion of parallax to provide a distance. Here we take a probabilistic approach to estimating stellar distances that uses a prior constructed from a three-dimensional model of our Galaxy. This model includes interstellar extinction and Gaias variable magnitude limit. We infer two types of distance. The first, geometric, uses the parallax together with a direction-dependent prior on distance. The second, photogeometric, additionally uses the colour and apparent magnitude of a star, by exploiting the fact that stars of a given colour have a restricted range of probable absolute magnitudes (plus extinction). Tests on simulated data and external validations show that the photogeometric estimates generally have higher accuracy and precision for stars with poor parallaxes. We provide a catalogue of 1.47 billion geometric and 1.35 billion photogeometric distances together with asymmetric uncertainty measures. Our estimates are quantiles of a posterior probability distribution, so they transform invariably and can therefore also be used directly in the distance modulus (5log10(r)-5). The catalogue may be downloaded or queried using ADQL at various sites (see http://www.mpia.de/homes/calj/gedr3_distances.html) where it can also be cross-matched with the Gaia catalogue.
124 - F. Arenou , X. Luri , C. Babusiaux 2017
Before the publication of the Gaia Catalogue, the contents of the first data release have undergone multiple dedicated validation tests. These tests aim at analysing in-depth the Catalogue content to detect anomalies, individual problems in specific objects or in overall statistical properties, either to filter them before the public release, or to describe the different caveats of the release for an optimal exploitation of the data. Dedicated methods using either Gaia internal data, external catalogues or models have been developed for the validation processes. They are testing normal stars as well as various populations like open or globular clusters, double stars, variable stars, quasars. Properties of coverage, accuracy and precision of the data are provided by the numerous tests presented here and jointly analysed to assess the data release content. This independent validation confirms the quality of the published data, Gaia DR1 being the most precise all-sky astrometric and photometric catalogue to-date. However, several limitations in terms of completeness, astrometric and photometric quality are identified and described. Figures describing the relevant properties of the release are shown and the testing activities carried out validating the user interfaces are also described. A particular emphasis is made on the statistical use of the data in scientific exploitation.
The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Gaia Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center. Positions are provided for each Gaia observation at CCD level. As additional information, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations. We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality. To exploit the epoch astrometry of asteroids in Gaia DR2 it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The distribution of residuals allowed us to identify possible contaminants in the data set. Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP). The overall astrometric performance is close to the expectations, with an optimal range of brightness G~12-17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G~12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by preliminary tests on the detection of subtle non-gravitational effects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا