Do you want to publish a course? Click here

Grobner Bases with Reduction Machines

66   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we make a contribution to the computation of Grobner bases. For polynomial reduction, instead of choosing the leading monomial of a polynomial as the monomial with respect to which the reduction process is carried out, we investigate what happens if we make that choice arbitrarily. It turns out not only this is possible (the fact that this produces a normal form being already known in the literature), but, for a fixed choice of reductors, the obtained normal form is the same no matter the order in which we reduce the monomials. To prove this, we introduce reduction machines, which work by reducing each monomial independently and then collecting the result. We show that such a machine can simulate any such reduction. We then discuss different implementations of these machines. Some of these implementations address inherent inefficiencies in reduction machines (repeating the same computations). We describe a first implementation and look at some experimental results.



rate research

Read More

In this work we provide a definition of a coloured operad as a monoid in some monoidal category, and develop the machinery of Grobner bases for coloured operads. Among the examples for which we show the existance of a quadratic Grobner basis we consider the seminal Lie-Rinehart operad whose algebras include pairs (functions, vector fields).
Grassmann manifolds $G_{k,n}$ are among the central objects in geometry and topology. The Borel picture of the mod 2 cohomology of $G_{k,n}$ is given as a polynomial algebra modulo a certain ideal $I_{k,n}$. The purpose of this paper is to understand this cohomology via Grobner bases. Reduced Grobner bases for the ideals $I_{k,n}$ are determined. An application of these bases is given by proving an immersion theorem for Grassmann manifolds $G_{5,n}$, which establishes new immersions for an infinite family of these manifolds.
Model selection based on experimental data is an important challenge in biological data science. Particularly when collecting data is expensive or time consuming, as it is often the case with clinical trial and biomolecular experiments, the problem of selecting information-rich data becomes crucial for creating relevant models. We identify geometric properties of input data that result in a unique algebraic model and we show that if the data form a staircase, or a so-called linear shift of a staircase, the ideal of the points has a unique reduced Gro bner basis and thus corresponds to a unique model. We use linear shifts to partition data into equivalence classes with the same basis. We demonstrate the utility of the results by applying them to a Boolean model of the well-studied lac operon in E. coli.
In the field of algebraic systems biology, the number of minimal polynomial models constructed using discretized data from an underlying system is related to the number of distinct reduced Grobner bases for the ideal of the data points. While the theory of Grobner bases is extensive, what is missing is a closed form for their number for a given ideal. This work contributes connections between the geometry of data points and the number of Grobner bases associated to small data sets. Furthermore we improve an existing upper bound for the number of Grobner bases specialized for data over a finite field.
68 - Zihao Qi , Yufei Qin , Kai Wang 2021
This paper investigates algebraic objects equipped with an operator, such as operated monoids, operated algebras etc. Various free object functors in these operated contexts are explicitly constructed. For operated algebras whose operator satisfies a set $Phi$ of relations (usually called operated polynomial identities (aka. OPIs)), Guo defined free objects, called free $Phi$-algebras, via universal algebra. Free $Phi$-algebras over algebras are studied in details. A mild sufficient condition is found such that $Phi$ together with a Grobner-Shirshov basis of an algebra $A$ form a Grobner-Shirshov basis of the free $Phi$-algebra over algebra $A$ in the sense of Guo et al.. Ample examples for which this condition holds are provided, such as all Rota-Baxter type OPIs, a class of differential type OPIs, averaging OPIs and Reynolds OPI.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا