No Arabic abstract
The MAGIC telescopes are one of the three major IACTs (Imaging Atmospheric Cherenkov Telescopes) for observation of gamma rays in the TeV regime currently operative. MAGIC functions since 2003, and has published data from more than 60 sources, mostly blazars. MAGIC already provides astronomical texttt{.fits} files with basic final scientific products such as spectral energy distributions, light curves and skymaps from published results. In future, the format of the files can be complemented with further relevant information to the community: a) by including the full multi-wavelength dataset enclosed in a publication, b) providing data in alternative easy-to-use formats such as ASCII or ECSV, which are accessible with other commonly used packages such as texttt{astropy} or texttt{gammapy}. Finally, besides high level products, activities have started to provide photon event lists and instrument response functions in a format such that scientists within and outside the community are allowed to perform higher level analysis. A second aim is to provide a full legacy of MAGIC data. This contribution will illustrate the achievements and plans of this activity.
Gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!
The future space-based GAMMA-400 gamma-ray telescope will operate onboard the Russian astrophysical observatory in a highly elliptic orbit during 7 years to observe Galactic plane, Galactic Center, Fermi Bubbles, Crab, Vela, Cygnus X, Geminga, Sun, and other regions and measure gamma- and cosmic-ray fluxes. Observations will be performed in the point-source mode continuously for a long time (~100 days). GAMMA-400 will have the unprecedented angular and energy resolutions better than the space-based and ground-based gamma-ray telescopes by a factor of 5-10. Excellent separation of gamma rays from cosmic-ray background, as well as electrons + positrons from protons will allow us to measure gamma rays in the energy range from ~20 MeV to several TeV and cosmic-ray electrons + positrons up to several tens TeV. GAMMA-400 observations will permit to resolve gamma rays from annihilation or decay of dark matter particles, identify many discrete sources, clarify the structure of extended sources, specify the data on cosmic-ray electron + positron spectra.
The future GAMMA-400 space mission is aimed for the study of gamma rays in the energy range from ~20 MeV up to ~1 TeV. The observations will carry out with GAMMA-400 gamma-ray telescope installed on-board the Russian Space Observatory. We present the detailed description of the architecture and performances of scientific data acquisition system (SDAQ) developing by SRISA for the GAMMA-400 instrument. SDAQ provides the collection of the data from telescope detector subsystems (up to 100 GB per day), the preliminary processing of scientific information and its accumulation in mass memory, transferring the information from mass memory to the satellite high-speed radio line for its transmission to the ground station, the control and monitoring of the telescope subsystems. SDAQ includes special space qualified chipset designed by SRISA and has scalable modular net structure based on fast and high-reliable serial interfaces.
The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view $gtrsim 8^circ$ and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov images from atmospheric showers with the GCT multi-anode photomultiplier camera prototype. We also discuss the development of a second GCT camera prototype with silicon photomultipliers as photosensors, and plans toward a contribution to the realisation of CTA.
The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern with the following scientific goals: search for signatures of dark matter, investigation of gamma-ray point and extended sources, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the active Sun, as well as high-precision measurements of spectra of high-energy electrons and positrons, protons, and nuclei up to the knee. The main components of cosmic rays are protons and helium nuclei, whereas the part of lepton component in the total flux is ~10E-3 for high energies. In present paper, the capability of the GAMMA-400 gamma-ray telescope to distinguish electrons and positrons from protons in cosmic rays is investigated. The individual contribution to the proton rejection is studied for each detector system of the GAMMA-400 gamma-ray telescope. Using combined information from all detector systems allow us to provide the proton rejection from electrons with a factor of ~4x10E5 for vertical incident particles and ~3x10E5 for particles with initial inclination of 30 degrees. The calculations were performed for the electron energy range from 50 GeV to 1 TeV.