No Arabic abstract
We investigate charm production in charged-current deep-inelastic scattering (DIS) using the xFitter program. xFitter is an open-source software framework for the determination of PDFs and the analysis of QCD physics, and has been used for a variety of LHC studies. The study of charged current DIS charm production provides an important perspective on the strange quark PDF, s(x). We make use of the xFitter tools to study the present s(x) constraints, and then use LHeC pseudodata to infer how these might improve. Furthermore, as xFitter implements both Fixed Flavor and Variable Flavor number schemes, we can examine the impact of these different theoretical choices; this highlights some interesting aspects of multi-scale calculations. This study provides a practical illustration of the many features of xFitter.
We study charm production in charged-current deep-inelastic scattering (DIS) using the xFitter framework. Recent results from the LHC have focused renewed attention on the determination of the strange-quark parton distribution function (PDF) and the DIS charm process provides important complementary constraints on this quantity. We examine the current PDF uncertainty, and use LHeC pseudodata to estimate the potential improvement from this proposed facility. As xFitter implements both fixed-flavor- and variable-flavor-number schemes, we can compare the impact of these different theoretical choices; this highlights some interesting aspects of multi-scale calculations. We find that the high-statistics LHeC data covering a wide kinematic range could substantially reduce the strange PDF uncertainty.
Constraints on the intrinsic charm probability $wccm = P_{{mathrm{c}bar mathrm{c}} / mathrm{p}}$ in the proton are obtained for the first time from LHC measurements. The ATLAS Collaboration data for the production of prompt photons, accompanied by a charm-quark jet in pp collisions at $sqrt s = 8 $ TeV, are used. The upper limit mbox{$wccm < 1.93$~%} is obtained at the 68~% confidence level. This constraint is primarily determined from the theoretical scale and systematical experimental uncertainties. Suggestions for reducing these uncertainties are discussed. The implications of intrinsic heavy quarks in the proton for future studies at the LHC are also discussed.
While charged lepton flavor violation (cLFV) with taus is often expected to be largest in many extensions of the Standard Model (SM), it is currently much less constrained than cLFV with electrons and muons. We study the sensitivity of the LHeC to $e$-$tau$ (and $e$-$mu$) conversion processes $p e^- to tau^- + j$ (and $p e^- to mu^- + j$) mediated by a $Z$ with flavor-violating couplings to charged leptons in the $t$-channel. Compared to current tests at the LHC, where cLFV decays of the $Z$ (produced in the s-channel) are searched for, the LHeC has sensitivity to much higher $Z$ masses, up to O(10) TeV. For cLFV with taus, we find that the LHeC sensitivity from the process $p e^- to tau^- + j$ can exceed the current limits from collider and non-collider experiments in the whole considered $Z$ mass range (above $500$ GeV) by more than two orders of magnitude. In particular for extensions of the SM with a heavy $Z$, where direct production at colliders is kinematically suppressed, $e-tau$ conversion at LHeC provides an exciting new discovery channel for this type of new physics.
The exact decomposition of the proton spin has been a much debated topic, on the experimental as well as the theoretical side. In this talk we would like to report on recent non-perturbative results and ongoing efforts to explore the proton spin from lattice QCD. We present results for the relevant generalized form factors from gauge field ensembles that feature a physical value of the pion mass. These generalized form factors can be used to determine the total spin and angular momentum carried by the quarks. In addition we present first results for our ongoing effort to compute the angular momentum of the gluons in the proton.
Charm production in charged current deep inelastic scattering has been measured for the first time in $e^{pm}p$ collisions, using data collected with the ZEUS detector at HERA, corresponding to an integrated luminosity of $358 pb^{-1}$. Results are presented separately for $e^{+}p$ and $e^{-}p$ scattering at a centre-of-mass energy of $sqrt{s} = 318 GeV$ within a kinematic phase-space region of $200 GeV^{2}<Q^{2}<60000 GeV^{2}$ and $y<0.9$, where $Q^{2}$ is the squared four-momentum transfer and $y$ is the inelasticity. The measured cross sections of electroweak charm production are consistent with expectations from the Standard Model within the large statistical uncertainties.