Do you want to publish a course? Click here

Probing $Z^prime$ Mediated Charged Lepton Flavor Violation with Taus at the LHeC

62   0   0.0 ( 0 )
 Added by Ahmed Rashed Dr
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

While charged lepton flavor violation (cLFV) with taus is often expected to be largest in many extensions of the Standard Model (SM), it is currently much less constrained than cLFV with electrons and muons. We study the sensitivity of the LHeC to $e$-$tau$ (and $e$-$mu$) conversion processes $p e^- to tau^- + j$ (and $p e^- to mu^- + j$) mediated by a $Z$ with flavor-violating couplings to charged leptons in the $t$-channel. Compared to current tests at the LHC, where cLFV decays of the $Z$ (produced in the s-channel) are searched for, the LHeC has sensitivity to much higher $Z$ masses, up to O(10) TeV. For cLFV with taus, we find that the LHeC sensitivity from the process $p e^- to tau^- + j$ can exceed the current limits from collider and non-collider experiments in the whole considered $Z$ mass range (above $500$ GeV) by more than two orders of magnitude. In particular for extensions of the SM with a heavy $Z$, where direct production at colliders is kinematically suppressed, $e-tau$ conversion at LHeC provides an exciting new discovery channel for this type of new physics.



rate research

Read More

We study charged lepton flavor violation associated with a light leptophilic axion-like particle (ALP), $X$, at the $B$-factory experiment Belle II. We focus on production of the ALP in the tau decays $tau to X l$ with $l=e,mu$, followed by its decay via $Xto l^- l^+$. The ALP can be either promptly decaying or long-lived. We perform Monte-Carlo simulations, recasting a prompt search at Belle for lepton-flavor-violating $tau$ decays, and propose a displaced-vertex (DV) search. For both types of searches, we derive the Belle~II sensitivity reaches in both the product of branching fractions and the ALP coupling constants, as functions of the ALP mass and lifetime. The results show that the DV search exceeds the sensitivity reach of the prompt search to the relevant branching fractions by up to about a factor of 40 in the long decay length regime.
We present a comprehensive analysis of the potential sensitivity of the Electron-Ion Collider (EIC) to charged lepton flavor violation (CLFV) in the channel $epto tau X$, within the model-independent framework of the Standard Model Effective Field Theory (SMEFT). We compute the relevant cross sections to leading order in QCD and electroweak corrections and perform simulations of signal and SM background events in various $tau$ decay channels, suggesting simple cuts to enhance the associated estimated efficiencies. To assess the discovery potential of the EIC in $tau$-$e$ transitions, we study the sensitivity of other probes of this physics across a broad range of energy scales, from $pp to e tau X$ at the Large Hadron Collider to decays of $B$ mesons and $tau$ leptons, such as $tau to e gamma$, $tau to e ell^+ ell^-$, and crucially the hadronic modes $tau to e Y$ with $Y in { pi, K, pi pi, K pi, ...}$. We find that electroweak dipole and four-fermion semi-leptonic operators involving light quarks are already strongly constrained by $tau$ decays, while operators involving the $c$ and $b$ quarks present more promising discovery potential for the EIC. An analysis of three models of leptoquarks confirms the expectations based on the SMEFT results. We also identify future directions needed to maximize the reach of the EIC in CLFV searches: these include an optimization of the $tau$ tagger in hadronic channels, an exploration of background suppression through tagging $b$ and $c$ jets in the final state, and a global fit by turning on all SMEFT couplings, which will likely reveal new discovery windows for the EIC.
We investigate the sensitivity of electron-proton ($ep$) colliders for charged lepton flavor violation (cLFV) in an effective theory approach, considering a general effective Lagrangian for the conversion of an electron into a muon or a tau via the effective coupling to a neutral gauge boson or a neutral scalar field. For the photon, the $Z$ boson and the Higgs particle of the Standard Model, we present the sensitivities of the LHeC for the coefficients of the effective operators, calculated from an analysis at the reconstructed level. As an example model where such flavor changing neutral current (FCNC) operators are generated at loop level, we consider the extension of the Standard Model by sterile neutrinos. We show that the LHeC could already probe the LFV conversion of an electron into a muon beyond the current experimental bounds, and could reach more than an order of magnitude higher sensitivity than the present limits for LFV conversion of an electron into a tau. We discuss that the high sensitivities are possible because the converted charged lepton is dominantly emitted in the backward direction, enabling an efficient separation of the signal from the background.
We study impacts of dimension-five lepton-number violating operators associated with two same-sign weak bosons, $ell^pm ell^{prime pm} W^mp W^mp$, on current and future experiments for neutrino oscillation, lepton-number violating rare processes and high-energy collider experiments. These operators can contain important information on the origin of tiny neutrino masses, which is independent of that from the so-called Weinberg operator. We examine constraints on the coefficients of the operators by the neutrino oscillation data. Upper bounds on the coefficients are also investigated by using the data for processes of lepton number violation such as neutrinoless double beta decays and $mu^-$-$e^+$ conversion. These operators can also be directly tested by searching for lepton-number violating dilepton production via the same-sign W boson fusion process at high-energy hadron colliders like the Large Hadron Collider. We find that these operators can be considerably probed by these current and future experiments.
We investigate a potential of discovering lepton flavor violation (LFV) at the Large Hadron Collider. A sizeable LFV in low energy supersymmetry can be induced by massive right-handed neutrinos, which can explain neutrino oscillations via the seesaw mechanism. We investigate a scenario where the distribution of an invariant mass of two hadronically decaying taus ($tauhtauh$) from $schizero{2}$ decays is the same in events with or without LFV. We first develop a transfer function using this ditau mass distribution to model the shape of the non-LFV $tauhmu$ invariant mass. We then show the feasibility of extracting the LFV $tauhmu$ signal. The proposed technique can also be applied for a LFV $tauh e$ search.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا