Do you want to publish a course? Click here

Observation of an unpaired photonic Dirac point

115   0   0.0 ( 0 )
 Added by Gui-Geng Liu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

At photonic Dirac points, electromagnetic waves are governed by the same equations as two-component massless relativistic fermions. However, photonic Dirac points are known to occur in pairs in photonic graphene and other similar photonic crystals, which necessitates special precautions to excite only states near one of the Dirac points. Systems hosting unpaired photonic Dirac points are significantly harder to realize, as they require broken time-reversal symmetry. Here, we report on the first observation of an unpaired Dirac point in a planar two-dimensional photonic crystal. The structure incorporates gyromagnetic materials, which break time-reversal symmetry; the unpaired Dirac point occurs when a parity-breaking parameter is fine-tuned to a topological transition between a photonic Chern insulator and a conventional photonic insulator phase. Evidence for the unpaired Dirac point is provided by transmission and field-mapping experiments, including a demonstration of strongly non-reciprocal reflection. This photonic crystal is suitable for investigating the unique features of two-dimensional Dirac states, such as one-way Klein tunneling.



rate research

Read More

We demonstrate the generation of coherent phonons in a quartz Bulk Acoustic Wave (BAW) resonator through the photoelastic properties of the crystal, via the coupling to a microwave cavity enhanced by a photonic lambda scheme. This is achieved by imbedding a single crystal BAW resonator between the post and the adjacent wall of a microwave reentrant cavity resonator. This 3D photonic lumped LC resonator at the same time acts as the electrodes of a BAW phonon resonator, and allows the direct readout of coherent phonons via the linear piezoelectric response of the quartz. A microwave pump, $omega_p$ is tuned to the cavity resonance $omega_0$, while a probe frequency, $omega_{probe}$, is detuned and varied around the red and blue detuned values with respect to the BAW phonon frequency, $Omega_m$. The pump and probe power dependence of the generated phonons unequivocally determines the process to be electrostrictive, with the phonons produced at the difference frequency between pump and probe, with no back action effects involved. Thus, the phonons are created without threshold and can be considered analogous to a Coherent Population Trapped (CPT) maser scheme.
A novel technique is presented for realising programmable silicon photonic circuits. Once the proposed photonic circuit is programmed, its routing is retained without the need for additional power consumption. This technology enables a uniform multi-purpose design of photonic chips for a range of different applications and performance requirements, as it can be programmed for each specific application after chip fabrication. Therefore the cost per chip can be dramatically reduced because of the increase in production volume, and rapid prototyping of new photonic circuits is enabled. Essential building blocks for programmable circuits, erasable directional couplers (DCs) were designed and fabricated, utilising ion implanted waveguides. We demonstrate permanent switching between the drop port and through port of the DCs using a localised post-fabrication laser annealing process. Proof-of-principle demonstrators in the form of generic 1X4 and 2X2 programmable switching circuits were then fabricated and subsequently programmed, to define their function.
We report a compact, scalable, quantum photonic integrated circuit realised by combining multiple, independent InGaAs/GaAs quantum-light-emitting-diodes (QLEDs) with a silicon oxynitride waveguide circuit. Each waveguide joining the circuit can then be excited by a separate, independently electrically contacted QLED. We show that the emission from neighbouring QLEDs can be independently tuned to degeneracy using the Stark Effect and that the resulting photon streams are indistinguishable. This enables on-chip Hong-Ou-Mandel-type interference, as required for many photonic quantum information processing schemes.
Weyl semimetals are gapless three-dimensional (3D) phases whose bandstructures contain Weyl point (WP) degeneracies. WPs carry topological charge and can only be eliminated by mutual annihilation, a process that generates the various topologically distinct 3D insulators. Time reversal (T) symmetric Weyl phases, containing a minimum of four WPs, have been extensively studied in real materials, photonic metamaterials, and other systems. Weyl phases with a single WP pair - the simplest configuration of WPs - are more elusive as they require T-breaking. Here, we implement a microwave-scale gyromagnetic 3D photonic crystal, and use field-mapping experiments to track a single pair of ideal WPs whose momentum space locations depend strongly on the biasing magnetic field. By continuously varying the field strength, we observe the annihilation of the WPs, and the formation of a 3D Chern insulator, a previously unrealised member of the family of 3D topological insulators (TIs). Surface measurements show, in unprecedented detail, how the Fermi arc states connecting the WPs evolve into TI surface states.
We demonstrate a surface-electrode ion trap fabricated using techniques transferred from the manufacture of photonic-crystal fibres. This provides a relatively straightforward route for realizing traps with an electrode structure on the 100 micron scale with high optical access. We demonstrate the basic functionality of the trap by cooling a single ion to the quantum ground state, allowing us to measure a heating rate from the ground state of 787(24) quanta/s. Variation of the fabrication procedure used here may provide access to traps in this geometry with trap scales between 100 um and 10 um.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا