No Arabic abstract
Networks with underlying metric spaces attract increasing research attention in network science, statistical physics, applied mathematics, computer science, sociology, and other fields. This attention is further amplified by the current surge of activity in graph embedding. In the vast realm of spatial network models, only a few reproduce even the most basic properties of real-world networks. Here, we focus on three such properties---sparsity, small worldness, and clustering---and identify the general subclass of spatial homogeneous and heterogeneous network models that are sparse small worlds and that have nonzero clustering in the thermodynamic limit. We rely on the maximum entropy approach where network links correspond to noninteracting fermions whose energy dependence on spatial distances determines network small worldness and clustering.
Small-worlds represent efficient communication networks that obey two distinguishing characteristics: a high clustering coefficient together with a small characteristic path length. This paper focuses on an interesting paradox, that removing links in a network can increase the overall clustering coefficient. Reckful Roaming, as introduced in this paper, is a 2-localized algorithm that takes advantage of this paradox in order to selectively remove superfluous links, this way optimizing the clustering coefficient while still retaining a sufficiently small characteristic path length.
Random network models play a prominent role in modeling, analyzing and understanding complex phenomena on real-life networks. However, a key property of networks is often neglected: many real-world networks exhibit spatial structure, the tendency of a node to select neighbors with a probability depending on physical distance. Here, we introduce a class of random spatial networks (RSNs) which generalizes many existing random network models but adds spatial structure. In these networks, nodes are placed randomly in space and joined in edges with a probability depending on their distance and their individual expected degrees, in a manner that crucially remains analytically tractable. We use this network class to propose a new generalization of small-world networks, where the average shortest path lengths in the graph are small, as in classical Watts-Strogatz small-world networks, but with close spatial proximity of nodes that are neighbors in the network playing the role of large clustering. Small-world effects are demonstrated on these spatial small-world networks without clustering. We are able to derive partial integro-differential equations governing susceptible-infectious-recovered disease spreading through an RSN, and we demonstrate the existence of traveling wave solutions. If the distance kernel governing edge placement decays slower than exponential, the population-scale dynamics are dominated by long-range hops followed by local spread of traveling waves. This provides a theoretical modeling framework for recent observations of how epidemics like Ebola evolve in modern connected societies, with long-range connections seeding new focal points from which the epidemic locally spreads in a wavelike manner.
Document networks are characteristic in that a document node, e.g. a webpage or an article, carries meaningful content. Properties of document networks are not only affected by topological connectivity between nodes, but also strongly influenced by the semantic relation between content of the nodes. We observe that document networks have a large number of triangles and a high value of clustering coefficient. And there is a strong correlation between the probability of formation of a triangle and the content similarity among the three nodes involved. We propose the degree-similarity product (DSP) model which well reproduces these properties. The model achieves this by using a preferential attachment mechanism which favours the linkage between nodes that are both popular and similar. This work is a step forward towards a better understanding of the structure and evolution of document networks.
Algorithms for community detection are usually stochastic, leading to different partitions for different choices of random seeds. Consensus clustering has proven to be an effective technique to derive more stable and accurate partitions than the ones obtained by the direct application of the algorithm. However, the procedure requires the calculation of the consensus matrix, which can be quite dense if (some of) the clusters of the input partitions are large. Consequently, the complexity can get dangerously close to quadratic, which makes the technique inapplicable on large graphs. Here we present a fast variant of consensus clustering, which calculates the consensus matrix only on the links of the original graph and on a comparable number of additional node pairs, suitably chosen. This brings the complexity down to linear, while the performance remains comparable as the full technique. Therefore, our fast consensus clustering procedure can be applied on networks with millions of nodes and links.
Understanding the resilience of infrastructures such as transportation network has significant importance for our daily life. Recently, a homogeneous spatial network model was developed for studying spatial embedded networks with characteristic link length such as power-grids and the brain. However, although many real-world networks are spatially embedded and their links have characteristics length such as pipelines, power lines or ground transportation lines they are not homogeneous but rather heterogeneous. For example, density of links within cities are significantly higher than between cities. Here we present and study numerically and analytically a similar realistic heterogeneous spatial modular model using percolation process to better understand the effect of heterogeneity on such networks. The model assumes that inside a city there are many lines connecting different locations, while long lines between the cities are sparse and usually directly connecting only a few nearest neighbours cities in a two dimensional plane. We find that this model experiences two distinct continues transitions, one when the cities disconnect from each other and the second when each city breaks apart. Although the critical threshold for site percolation in 2D grid remains an open question we analytically find the critical threshold for site percolation in this model. In addition, while the homogeneous model experience a single transition having a unique phenomenon called textit{critical stretching} where a geometric crossover from random to spatial structure in different scales found to stretch non-linearly with the characteristic length at criticality. Here we show that the heterogeneous model does not experience such a phenomenon indicating that critical stretching strongly depends on the network structure.