We study the propagation of surface spin waves in two wave guides coupled through the dipole-dipole interaction. Essential for the observations made here is the magneto-electric coupling between the spin waves and the effective ferroelectric polarization. This allows an external electric field to act on spin waves and to modify the band gaps of magnonic excitations in individual layers. By an on/off switching of the electric field and/or varying its strength or direction with respect to the equilibrium magnetization, it is possible to permit or ban the propagation of the spin waves in selected waveguide. We propose experimentally feasible nanoscale device operating as a high fidelity surface wave magnonic gate.
Implementing high-fidelity two-qubit gates in single-electron spin qubits in silicon double quantum dots is still a major challenge. In this work, we employ analytical methods to design control pulses that generate high-fidelity entangling gates for quantum computers based on this platform. Using realistic parameters and initially assuming a noise-free environment, we present simple control pulses that generate CNOT, CPHASE, and CZ gates with average fidelities greater than 99.99% and gate times as short as 45 ns. Moreover, using the local invariants of the systems evolution operator, we show that a simple square pulse generates a CNOT gate in less than 27 ns and with a fidelity greater than 99.99%. Last, we use the same analytical methods to generate two-qubit gates locally equivalent to $sqrt{mathrm{CNOT}}$ and $sqrt{mathrm{CZ}}$ that are used to implement simple two-piece pulse sequences that produce high-fidelity CNOT and CZ gates in the presence of low-frequency noise.
A two-qubit controlled-NOT (CNOT) gate, realized by a controlled-phase (C-phase) gate combined with single-qubit gates, has been experimentally implemented recently for quantum-dot spin qubits in isotopically enriched silicon, a promising solid-state system for practical quantum computation. In the experiments, the single-qubit gates have been demonstrated with fault-tolerant control-fidelity, but the infidelity of the two-qubit C-phase gate is, primarily due to the electrical noise, still higher than the required error threshold for fault-tolerant quantum computation (FTQC). Here, by taking the realistic system parameters and the experimental constraints on the control pulses into account, we construct experimentally realizable high-fidelity CNOT gates robust against electrical noise with the experimentally measured $1/f^{1.01}$ noise spectrum and also against the uncertainty in the interdot tunnel coupling amplitude. Our optimal CNOT gate has about two orders of magnitude improvement in gate infidelity over the ideal C-phase gate constructed without considering any noise effect. Furthermore, within the same control framework, high-fidelity and robust single-qubit gates can also be constructed, paving the way for large-scale FTQC.
The flip-flop qubit, encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon, showcases long coherence times, good controllability, and, in contrast to other donor-spin-based schemes, long-distance coupling. Electron spin control near the interface, however, is likely to shorten the relaxation time by many orders of magnitude, reducing the overall qubit quality factor. Here, we theoretically study the multilevel system that is formed by the interacting electron and nuclear spins and derive analytical effective two-level Hamiltonians with and without periodic driving. We then propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise and relatively weak magnetic fields without relying on parametrically restrictive sweet spots. This scheme increases considerably both the relaxation time and the qubit quality factor.
The quantum mechanical screening of a spin via conduction electrons depends sensitively on the environment seen by the magnetic impurity. A high degree of responsiveness can be obtained with metal complexes, as the embedding of a metal ion into an organic molecule prevents intercalation or alloying and allows for a good control by an appropriate choice of the ligands. There are therefore hopes to reach an on demand control of the spin state of single molecules adsorbed on substrates. Hitherto one route was to rely on switchable molecules with intrinsic bistabilities triggered by external stimuli, such as temperature or light, or on the controlled dosing of chemicals to form reversible bonds. However, these methods constrain the functionality to switchable molecules or depend on access to atoms or molecules. Here, we present a way to induce bistability also in a planar molecule by making use of the environment. We found that the particular habitat offered by an antiphase boundary of the Rashba system BiAg$_2$ stabilizes a second structure for manganese phthalocyanine molecules, in which the central Mn ion moves out of the molecular plane. This corresponds to the formation of a large magnetic moment and a concomitant change of the ground state with respect to the conventional adsorption site. The reversible spin switch found here shows how we can not only rearrange electronic levels or lift orbital degeneracies via the substrate, but even sway the effects of many-body interactions in single molecules by acting on their surrounding.
We present a statistically motivated method to extract magnonic contrast from STXM-FMR measurement with microwave frequencies of the order of unit[10]{GHz}. With this method it is possible to generate phase and amplitude profiles with a spatial resolution of about unit[30]{nm} given by the STXM resolution, furthermore this method allows fo a rigoros transformation to reciprocal vec{k}-space, revealing vec{k}-dependent magnon properties.