Do you want to publish a course? Click here

Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries

127   0   0.0 ( 0 )
 Added by Wenqing Lin
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Given a graph $G$, a source node $s$ and a target node $t$, the personalized PageRank (PPR) of $t$ with respect to $s$ is the probability that a random walk starting from $s$ terminates at $t$. An important variant of the PPR query is single-source PPR (SSPPR), which enumerates all nodes in $G$, and returns the top-$k$ nodes with the highest PPR values with respect to a given source $s$. PPR in general and SSPPR in particular have important applications in web search and social networks, e.g., in Twitters Who-To-Follow recommendation service. However, PPR computation is known to be expensive on large graphs, and resistant to indexing. Consequently, previous solutions either use heuristics, which do not guarantee result quality, or rely on the strong computing power of modern data centers, which is costly. Motivated by this, we propose effective index-free and index-based algorithms for approximate PPR processing, with rigorous guarantees on result quality. We first present FORA, an approximate SSPPR solution that combines two existing methods Forward Push (which is fast but does not guarantee quality) and Monte Carlo Random Walk (accurate but slow) in a simple and yet non-trivial way, leading to both high accuracy and efficiency. Further, FORA includes a simple and effective indexing scheme, as well as a module for top-$k$ selection with high pruning power. Extensive experiments demonstrate that the proposed solutions are orders of magnitude more efficient than their respective competitors. Notably, on a billion-edge Twitter dataset, FORA answers a top-500 approximate SSPPR query within 1 second, using a single commodity server.



rate research

Read More

Methods for ranking the importance of nodes in a network have a rich history in machine learning and across domains that analyze structured data. Recent work has evaluated these methods though the seed set expansion problem: given a subset $S$ of nodes from a community of interest in an underlying graph, can we reliably identify the rest of the community? We start from the observation that the most widely used techniques for this problem, personalized PageRank and heat kernel methods, operate in the space of landing probabilities of a random walk rooted at the seed set, ranking nodes according to weighted sums of landing probabilities of different length walks. Both schemes, however, lack an a priori relationship to the seed set objective. In this work we develop a principled framework for evaluating ranking methods by studying seed set expansion applied to the stochastic block model. We derive the optimal gradient for separating the landing probabilities of two classes in a stochastic block model, and find, surprisingly, that under reasonable assumptions the gradient is asymptotically equivalent to personalized PageRank for a specific choice of the PageRank parameter $alpha$ that depends on the block model parameters. This connection provides a novel formal motivation for the success of personalized PageRank in seed set expansion and node ranking generally. We use this connection to propose more advanced techniques incorporating higher moments of landing probabilities; our advanced methods exhibit greatly improved performance despite being simple linear classification rules, and are even competitive with belief propagation.
We consider the problem of evaluating certain types of functional aggregation queries on relational data subject to additive inequalities. Such aggregation queries, with a smallish number of additive inequalities, arise naturally/commonly in many applications, particularly in learning applications. We give a relatively complete categorization of the computational complexity of such problems. We first show that the problem is NP-hard, even in the case of one additive inequality. Thus we turn to approximating the query. Our main result is an efficient algorithm for approximating, with arbitrarily small relative error, many natural aggregation queries with one additive inequality. We give examples of natural queries that can be efficiently solved using this algorithm. In contrast, we show that the situation with two additive inequalities is quite different, by showing that it is NP-hard to evaluate simple aggregation queries, with two additive inequalities, with any bounded relative error.
We introduce and study several notions of approximation for ontology-mediated queries based on the description logics ALC and ALCI. Our approximations are of two kinds: we may (1) replace the ontology with one formulated in a tractable ontology language such as ELI or certain TGDs and (2) replace the database with one from a tractable class such as the class of databases whose treewidth is bounded by a constant. We determine the computational complexity and the relative completeness of the resulting approximations. (Almost) all of them reduce the data complexity from coNP-complete to PTime, in some cases even to fixed-parameter tractable and to linear time. While approximations of kind (1) also reduce the combined complexity, this tends to not be the case for approximations of kind (2). In some cases, the combined complexity even increases.
117 - Shang-Hua Teng 2017
Jiv{r}i Matouv{s}ek (1963-2015) had many breakthrough contributions in mathematics and algorithm design. His milestone results are not only profound but also elegant. By going beyond the original objects --- such as Euclidean spaces or linear programs --- Jirka found the essence of the challenging mathematical/algorithmic problems as well as beautiful solutions that were natural to him, but were surprising discoveries to the field. In this short exploration article, I will first share with readers my initial encounter with Jirka and discuss one of his fundamental geometric results from the early 1990s. In the age of social and information networks, I will then turn the discussion from geometric structures to network structures, attempting to take a humble step towards the holy grail of network science, that is to understand the network essence that underlies the observed sparse-and-multifaceted network data. I will discuss a simple result which summarizes some basic algebraic properties of personalized PageRank matrices. Unlike the traditional transitive closure of binary relations, the personalized PageRank matrices take accumulated Markovian closure of network data. Some of these algebraic properties are known in various contexts. But I hope featuring them together in a broader context will help to illustrate the desirable properties of this Markovian completion of networks, and motivate systematic developments of a network theory for understanding vast and ubiquitous multifaceted network data.
Given a dataset $mathcal{D}$, we are interested in computing the mean of a subset of $mathcal{D}$ which matches a predicate. ABae leverages stratified sampling and proxy models to efficiently compute this statistic given a sampling budget $N$. In this document, we theoretically analyze ABae and show that the MSE of the estimate decays at rate $O(N_1^{-1} + N_2^{-1} + N_1^{1/2}N_2^{-3/2})$, where $N=K cdot N_1+N_2$ for some integer constant $K$ and $K cdot N_1$ and $N_2$ represent the number of samples used in Stage 1 and Stage 2 of ABae respectively. Hence, if a constant fraction of the total sample budget $N$ is allocated to each stage, we will achieve a mean squared error of $O(N^{-1})$ which matches the rate of mean squared error of the optimal stratified sampling algorithm given a priori knowledge of the predicate positive rate and standard deviation per stratum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا