Do you want to publish a course? Click here

Enhancement of the upper critical field in the cubic Laves-phase superconductor HfV$_{2}$ by Nb doping

70   0   0.0 ( 0 )
 Added by Zhi Ren
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the effect of Nb doping on the upper critical field of the cubic Laves-phase superconductor HfV$_{2}$ studied in a series of HfV$_{2-x}$Nb$_{x}$ samples with 0 $leq$ $x$ $leq$ 0.3 under pulsed fields up to 30 T. The undoped HfV$_{2}$ undergoes a martensitic structural transition around 110 K, and becomes superconducting below $T_{rm c}$ = 9.4 K. Upon Nb doping, while the structural transition is suppressed for $x$ $geq$ 0.1, a maximum in $T_{rm c}$ of 10.1 K and zero-temperature upper critical field $B_{rm c2}$(0) of 22.4 T is found at $x$ = 0.2, which is ascribed to an increase of the density of states at the Fermi level. For all samples, the temperature dependence of $B_{rm c2}$ can be well described by the Werthamer-Helfand-Hohenberg (WHH) theory that takes into account both the spin paramagnetic effect and spin orbit scattering. In addition, a comparison is made between the $B_{rm c2}$ behavior of HfV$_{2-x}$Nb$_{x}$ and those of Nb-Ti and Nb$_{3}$Sn.



rate research

Read More

The superconducting parameters and upper critical field of the noncentrosymmetric superconductor BiPd have proven contentious. This material is of particular interest because it is a singular example of a $4f$-electron-free noncentrosymmetric superconductor of which crystals may be grown and cleaved, enabling surface-sensitive spectroscopies. Here, using bulk probes augmented by tunnelling data on defects, we establish that the lower of the previously reported upper critical fields corresponds to the bulk transition. The material behaves as a nearly-weak-coupled BCS s-wave superconductor, and we report its superconducting parameters as drawn from the bulk upper critical field. Possible reasons behind the order-of-magnitude discrepancy in the reported upper critical fields are discussed.
The upper critical field is a fundamental measure of the strength of superconductivity in a material. It is also a cornerstone for the realization of superconducting magnet applications. The critical field arises because of the Copper pair breaking at a limiting field, which is due to the Pauli paramagnetism of the electrons. The maximal possible magnetic field strength for this effect is commonly known as the Pauli paramagnetic limit given as $mu_0 H_{rm Pauli} approx 1.86{rm [T/K]} cdot T_{rm c}$ for a weak-coupling BCS superconductor. The violation of this limit is only rarely observed. Exceptions include some low-temperature heavy fermion and some strongly anisotropic superconductors. Here, we report on the superconductivity at 9.75 K in the centrosymmetric, cubic $eta$-carbide-type compound Nb$_4$Rh$_2$C$_{1-delta}$, with a normalized specific heat jump of $Delta C/gamma T_{rm c} =$ 1.64. We find that this material has a remarkably high upper critical field of $mu_0 H_{rm c2}{rm (0)}$ =~28.5~T, which is exceeding by far its weak-coupling BCS Pauli paramagnetic limit of $mu_0 H_{rm Pauli}$~=~18.1 T. Determination of the origin and consequences of this effect will represent a significant new direction in the study of critical fields in superconductors.
124 - S.X. Dou 2002
Doping of MgB2 by nano-SiC and its potential for improvement of flux pinning was studied for MgB2-x(SiC)x/2 with x = 0, 0.2 and 0.3 and a 10wt% nano-SiC doped MgB2 samples. Co-substitution of B by Si and C counterbalanced the effects of single-element doping, decreasing Tc by only 1.5K, introducing pinning centres effective at high fields and temperatures and enhancing Jc and Hirr significantly. Compared to the non-doped sample, Jc for the 10wt% doped sample increased by a factor of 32 at 5K and 8T, 42 at 20K and 5T, and 14 at 30K and 2T. At 20K, which is considered to be a benchmark operating temperature for MgB2, the best Jc for the doped sample was 2.4x10^5A/cm2 at 2T, which is comparable to Jc of the best Ag/Bi-2223 tapes. At 20K and 4T, Jc was 36,000A/cm2, which was twice as high as for the best MgB2 thin films and an order of magnitude higher than for the best Fe/MgB2 tapes. Because of such high performance, it is anticipated that the future MgB2 conductors will be made using the formula of MgBxSiyCz instead of the pure MgB2.
The upper critical field Hc2 is a fundamental measure of the pairing strength, yet there is no agreement on its magnitude and doping dependence in cuprate superconductors. We have used thermal conductivity as a direct probe of Hc2 in the cuprates YBa2Cu3Oy and YBa2Cu4O8 to show that there is no vortex liquid at T = 0, allowing us to use high-field resistivity measurements to map out the doping dependence of Hc2 across the phase diagram. Hc2(p) exhibits two peaks, each located at a critical point where the Fermi surface undergoes a transformation. The condensation energy obtained directly from Hc2, and previous Hc1 data, undergoes a 20-fold collapse below the higher critical point. These data provide quantitative information on the impact of competing phases in suppressing superconductivity in cuprates.
152 - L. D. Cooley , Y. F. Hu , 2005
Nb3Sn was prepared by milling Nb and Sn powder mixtures followed by limited reactions to restrict disorder recovery. Although disorder reduced the superconducting critical temperature Tc, the concomitant electron scattering increased the upper critical field mu0Hc2 to as high as 35 T at 0 K, as determined by the Werthamer-Helfand-Hohenberg equation. Hc2 was higher for longer milling times and lower annealing temperatures. Substitution of 2% Ti for Nb did not appreciably enhance Hc2, suggesting that alloying mitigates the benefits of disorder. Since alloyed Nb3Sn wires have mu0Hc2(0) approximately 29 T, wires based on heavily milled powders could extend the field range for applications if they can be made with high current density.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا