Do you want to publish a course? Click here

Direct measurement of the upper critical field in a cuprate superconductor

138   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The upper critical field Hc2 is a fundamental measure of the pairing strength, yet there is no agreement on its magnitude and doping dependence in cuprate superconductors. We have used thermal conductivity as a direct probe of Hc2 in the cuprates YBa2Cu3Oy and YBa2Cu4O8 to show that there is no vortex liquid at T = 0, allowing us to use high-field resistivity measurements to map out the doping dependence of Hc2 across the phase diagram. Hc2(p) exhibits two peaks, each located at a critical point where the Fermi surface undergoes a transformation. The condensation energy obtained directly from Hc2, and previous Hc1 data, undergoes a 20-fold collapse below the higher critical point. These data provide quantitative information on the impact of competing phases in suppressing superconductivity in cuprates.



rate research

Read More

The transition temperature Tc of cuprate superconductors falls when the doping p is reduced below a certain optimal value. It is unclear whether this fall is due to strong phase fluctuations or to a decrease in the pairing gap. Different interpretations of photoemission data disagree on the evolution of the pairing gap and different estimates of the upper critical field Hc2 are in sharp contradiction. Here we resolve this contradiction by showing that superconducting fluctuations in the underdoped cuprate Eu-LSCO, measured via the Nernst effect, have a characteristic field scale that falls with underdoping. The critical field Hc2 dips at p = 0.11, showing that superconductivity is weak where stripe order is strong. In the archetypal cuprate superconductor YBCO, Hc2 extracted from other measurements has the same doping dependence, also with a minimum at p = 0.11, again where stripe order is present. We conclude that competing states such as stripe order weaken superconductivity and this, rather than phase fluctuations, causes Tc to fall as cuprates become underdoped.
We report measurements of the phase of the conductivity, $phi_sigmaequiv arg(sigma)$, in the normal state of a $Bi_{2}Sr_{2}CaCu_{2}O_{8+delta}$ (BSCCO) thin film from 0.2-1.0 THz. From $phi_sigma$ we obtain the time delay of the current response, $tau_sigmaequivphi_sigma/omega$. After discovering a systematic error in the data analysis, the extracted $tau_sigma$ has changed from that reported earlier. The revised data is shown in the sole figure below. Analysis and discussion of these data will follow.
The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates= materials remains heavily debated. Effective low energy single-band models of the copper-oxygen orbitals are widely used because there exists no strong experimental evidence supporting multiband structures. Here we report angle-resolved photoelectron spectroscopy experiments on La-based cuprates that provide direct observation of a two-band structure. This electronic structure, qualitatively consistent with density functional theory, is parametrised by a two-orbital ($d_{x^2-y^2}$ and $d_{z^2}$) tight-binding model. We quantify the orbital hybridisation which provides an explanation for the Fermi surface topology and the proximity of the van-Hove singularity to the Fermi level. Our analysis leads to a unification of electronic hopping parameters for single-layer cuprates and we conclude that hybridisation, restraining d-wave pairing, is an important optimisation element for superconductivity.
The Nernst effect was measured in the electron-doped cuprate superconductor Pr2-xCexCuO4 (PCCO) at four concentrations, from underdoped (x=0.13) to overdoped (x=0.17), for a wide range of temperatures above the critical temperature Tc. A magnetic field H up to 15 T was used to reliably access the normal-state quasiparticle contribution to the Nernst signal, Nqp, which is subtracted from the total signal, N, to obtain the superconducting contribution, Nsc. As a function of H, Nsc peaks at a field H* whose temperature dependence obeys Hc2* ln(T/Tc), as it does in a conventional superconductor like Nb1-xSix. The doping dependence of the characteristic field scale Hc2* - shown to be closely related to the upper critical field Hc2 - tracks the dome-like dependence of Tc, showing that superconductivity is weakened below the quantum critical point where the Fermi surface is reconstructed, presumably by the onset of antiferromagnetic order. Our data at all dopings are quantitatively consistent with the theory of Gaussian superconducting fluctuations, eliminating the need to invoke unusual vortex-like excitations above Tc, and ruling out phase fluctuations as the mechanism for the fall of Tc with underdoping. We compare the properties of PCCO with those of hole-doped cuprates and conclude that the domes of Tc and Hc2 vs doping in the latter materials are also controlled predominantly by phase competition rather than phase fluctuations.
We have carried out high-field resistivity measurements up to 27,T in EuFe$_2$As$_2$ at $P$,=,2.5,GPa, a virtually optimal pressure for the $P$-induced superconductivity, where $T_mathrm{c}$,=,30,K. The $B_mathrm{c2}-T_mathrm{c}$ phase diagram has been constructed in a wide temperature range with a minimum temperature of 1.6 K ($approx 0.05 times T_mathrm{c}$), for both $B parallel ab$ ($B_mathrm{c2}^mathrm{ab}$) and $B parallel c$ ($B_mathrm{c2}^mathrm{c}$). The upper critical fields $B_mathrm{c2}^mathrm{ab}$(0) and $B_mathrm{c2}^mathrm{c}$(0), determined by the onset of resistive transitions, are 25 T and 22 T, respectively, which are significantly smaller than those of other Fe-based superconductors with similar values of $T_mathrm{c}$. The small $B_mathrm{c2}(0)$ values and the $B_mathrm{c2}(T)$ curves with positive curvature around 20 K can be explained by a multiple pair-breaking model that includes the exchange field due to the magnetic Eu$^{2+}$ moments. The anisotropy parameter, $Gamma=B_mathrm{c2}^{ab}/B_mathrm{c2}^{c}$, in EuFe$_2$As$_2$ at low temperatures is comparable to that of other 122 Fe-based systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا