No Arabic abstract
It is well known that conductivity of disordered metals is suppressed in the limit of low frequencies and temperatures by quantum corrections. Although predicted by theory to exist up to much higher energies, such corrections have so far been experimentally proven only for $lesssim$80 meV. Here, by a combination of transport and optical studies, we demonstrate that the quantum corrections are present in strongly disordered conductor MoC up to at least $sim$4 eV, thereby extending the experimental window where such corrections were found by a factor of 50. The knowledge of both, the real and imaginary parts of conductivity, enables us to identify the microscopic parameters of the conduction electron fluid. We find that the conduction electron density of strongly disordered MoC is surprisingly high and we argue that this should be considered a generic property of metals on the verge of disorder-induced localization transition.
We study the thermal conductivity in disordered $s$-wave superconductors. Expanding on previous works for normal metals, we develop a formalism that tackles particle diffusion as well as the weak localization (WL) and weak anti-localization (WAL) effects. Using a Greens functions diagrammatic technique, which takes into account the superconducting nature of the system by working in Nambu space, we identify the systems low-energy modes, the diffuson and the Cooperon. The time scales that characterize the diffusive regime are energy dependent; this is in contrast with the the normal state, where the relevant time scale is the mean free time $tau_e$, independent of energy. The energy dependence introduces a novel energy scale $varepsilon_*$, which in disordered superconductors ($tau_e Deltall 1$, with $Delta$ the gap) is given by $varepsilon_* = sqrt{Delta/tau_e}$. From the diffusive behavior of the low-energy modes, we obtain the WL correction to the thermal conductivity. We give explicitly expressions in two dimensions. We determine the regimes in which the correction depends explicitly on $varepsilon_*$ and propose an optimal regime to verify our results in an experiment.
A seminal gedankenexperiment by Laughlin describes the charge transport in quantum Hall systems via the pumping of flux. Here, we propose an optical scheme which probes and manipulates quantum Hall systems in a similar way: When light containing orbital angular momentum interacts with electronic Landau levels, it acts as a flux pump which radially moves the electrons through the sample. We investigate this effect for a graphene system with Corbino geometry, and calculate the radial current in the absence of any electric potential bias. Remarkably, the current is robust against the disorder which is consistent with the lattice symmetry, and in the weak excitation limit, the current shows a power-law scaling with intensity characterized by the novel exponent 2/3.
Motivated by recent experimental findings, we study the contribution of a quantum critical optical phonon branch to the thermal conductivity of a paraelectric system. We consider the proximity of the optical phonon branch to transverse acoustic phonon branch and calculate its contribution to the thermal conductivity within the Kubo formalism. We find a low temperature power law dependence of the thermal conductivity as $T^{alpha}$, with $1 < alpha < 2$, (lower than $T^3$ behavior) due to optical phonons near the quantum critical point. This result is in accord with the experimental findings and indicates the importance of quantum fluctuations in the thermal conduction in these materials.
Quantum transport in magnetic topological insulators reveals the strong interplay between the magnetism and topology of electronic band structures. A recent experiment on magnetically doped topological insulator Bi2Se3 thin films showed the anomalous temperature dependence of the magnetoconductivity while their field dependence presents a clear signature of weak anti-localization [Tkac et al., Phys. Rev. Lett. 123, 036406(2019)]. Here we demonstrate that the tiny mass of the surface electrons induced by the bulk magnetization leads to a temperature-dependent correction to the pi Berry phase, and generates a decoherence mechanism to the phase coherence length of the surface electrons. As a consequence, the quantum correction to the conductivity can exhibit non-monotonic behavior by decreasing the temperature. This effect is attributed to the close relation of the Berry phase and quantum interference of the topological surface electrons in quantum topological materials.
The differential conductance of graphene is shown to exhibit a zero-bias anomaly at low temperatures, arising from a suppression of the quantum corrections due to weak localization and electron interactions. A simple rescaling of these data, free of any adjustable parameters, shows that this anomaly exhibits a universal, temperature- ($T$) independent form. According to this, the differential conductance is approximately constant at small voltages ($V<k_BT/e$), while at larger voltages it increases logarithmically with the applied bias, reflecting a quenching of the quantum corrections. For theoretical insight into the origins of this behavior, we formulate a model for weak-localization in the presence of nonlinear transport. According to this, the voltage applied under nonequilibrium induces unavoidable dephasing, arising from a self-averaging of the diffusing electron waves responsible for transport. By establishing the manner in which the quantum corrections are suppressed in graphene, our study will be of broad relevance to the investigation of nonequilibrium transport in mesoscopic systems in general. This includes systems implemented from conventional metals and semiconductors, as well as those realized using other two-dimensional semiconductors and topological insulators.