Do you want to publish a course? Click here

A Sterile Neutrino Search at compact materials irradiation facility

92   0   0.0 ( 0 )
 Added by Liangwen Chen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The compact material irradiation facility (CMIF) is a current project in China that will provide a compact deuteron-beryllium neutron source. The target of this facility will be an intense and compact Isotope Decay-At-Rest (IsoDAR) neutrino source. In this paper, we propose to test the sterile neutrino hypothesis using CMIF as the neutrino source. At CMIF platform, the electron antineutrino production rate can be up to $2.0times 10^{19}$ per day. When paired with an 80 t liquid scintillator detector to study short baseline electron antineutrino disappearance, the inverse beta decay (IBD) event rate is large enough to investigate the parameter ranges of interest for neutrino anomalies. Our sensitivity analysis shows that a short baseline experiment at this platform will provide a very competitive sterile neutrino search, especially in the high-$Delta m^2$ region ($Delta m^2 >10,text{eV}^2$).



rate research

Read More

166 - M.Harada , S.Hasegawa , Y.Kasugai 2013
We propose a definite search for sterile neutrinos at the J-PARC Materials and Life Science Experimental Facility (MLF). With the 3 GeV Rapid Cycling Synchrotron (RCS) and spallation neutron target, an intense neutrino beam from muon decay at rest (DAR) is available. Neutrinos come from mu+ decay, and the oscillation to be searched for is (anti u mu -> anti u e) which is detected by the inverse beta decay interaction (anti u e + p -> e+ + n), followed by a gamma from neutron capture. The unique features of the proposed experiment, compared with the LSND and experiments using horn focused beams, are; (1) The pulsed beam with about 600 ns spill width from J-PARC RCS and muon long lifetime allow us to select neutrinos from mu DAR only. (2) Due to nuclear absorption of pi- and mu-, neutrinos from mu- decay are suppressed to about the $10^{-3}$ level. (3) Neutrino cross sections are well known. The inverse beta decay cross section is known to be a few percent accuracy. (4) The neutrino energy can be calculated from positron energy by adding ~1.8 MeV. (5) The anti u mu and u e fluxes have different and well defined spectra. This allows us to separate oscillated signals from those due to mu- decay contamination. We propose to proceed with the oscillation search in steps since the region of Delta m^2 to be searched can be anywhere between sub-eV^2 to several tens of eV^2. We start to examine the large Delta m^2 region, which can be done with short baseline at first. At close distance to the MLF target gives a high neutrino flux, and allows us to use relatively small detector. If no definitive positive signal is found, a future option exists to cover small Delta m^2 region. This needs a relatively long baseline and requires a large detector to compensate for the reduced neutrino flux.
220 - M.Harada , S.Hasegawa , Y.Kasugai 2015
At the 17th J-PARC PAC, which was held on September 2013, we proposed the sterile neutrino search at J-PARC MLF. After reviewing the proposal, PAC recommended to have a background measurement at the detectors candidate site location in their report to investigate whether the background rates can be manageable for the real experiment or not. Therefore, we have performed the background measurements (MLF; 2013BU1301 test experiment) during the summer of 2014, also following the 18th J-PARC PAC recommendations, and the measurements results are described here.
267 - C. Lane , S.M. Usman , J. Blackmon 2015
We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the Reactor Antineutrino Anomaly. NuLat, is made possible by a natural synergy between the miniTimeCube and mini-LENS programs described in this paper. It features a Raghavan Optical Lattice (ROL) consisting of 3375 boron or $^6$Li loaded plastic scintillator cubical cells 6.3,cm (2.500) on a side. Cell boundaries have a 0.127,mm (0.005) air gap, resulting in total internal reflection guiding most of the light down the 3 cardinal directions. The ROL detector technology for NuLat gives excellent spatial and energy resolution and allows for in-depth event topology studies. These features allow us to discern inverse beta decay (IBD) signals and the putative oscillation pattern, even in the presence of other backgrounds. We discuss here test venues, efficiency, sensitivity and project status.
183 - Gang Guo , Fang Han , Xiangdong Ji 2013
We study the feasibility of a sterile neutrino search at the China Advanced Research Reactor by measuring $bar { u}_e$ survival probability with a baseline of less than 15 m. Both hydrogen and deuteron have been considered as potential targets. The sensitivity to sterile-to-regular neutrino mixing is investigated under the 3(active)+1(sterile) framework. We find that the mixing parameter $sin^2(2theta_{14})$ can be severely constrained by such measurement if the mass square difference $Delta m_{14}^2$ is of the order of $sim$1 eV$^2$.
In connection with the question of possible existence of sterile neutrino the laboratory on the basis of SM-3 reactor was created to search for oscillations of reactor antineutrino. A prototype of a neutrino detector with scintillator volume of 400 l can be moved at the distance of 6-11 m from the reactor core. The measurements of background conditions have been made. It is shown that the main experimental problem is associated with cosmic radiation background. Test measurements of dependence of a reactor antineutrino flux on the distance from a reactor core have been made. The prospects of search for oscillations of reactor antineutrino at short distances are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا