Do you want to publish a course? Click here

Status Report (BKG measurement): A Search for Sterile Neutrino at J-PARC MLF

209   0   0.0 ( 0 )
 Added by Takasumi Maruyama
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

At the 17th J-PARC PAC, which was held on September 2013, we proposed the sterile neutrino search at J-PARC MLF. After reviewing the proposal, PAC recommended to have a background measurement at the detectors candidate site location in their report to investigate whether the background rates can be manageable for the real experiment or not. Therefore, we have performed the background measurements (MLF; 2013BU1301 test experiment) during the summer of 2014, also following the 18th J-PARC PAC recommendations, and the measurements results are described here.



rate research

Read More

185 - M.Harada , S.Hasegawa , Y.Kasugai 2015
On April 2015, the J-PARC E56 (JSNS2: J-PARC Sterile Neutrino Search using neutrinos from J-PARC Spallation Neutron Source) experiment officially obtained stage-1 approval from J-PARC. We have since started to perform liquid scintillator R&D for improving energy resolution and fast neutron rejection. Also, we are studying Avalanche Photo-Diodes (SiPM) inside the liquid scintillator. In addition to the R&D work, a background measurement for the proton beam bunch timing using a small liquid scintillator volume was planned, and the safety discussions for the measurement have been done. This report describes the status of the R&D work and the background measurements, in addition to the milestones required before stage-2 approval.
173 - M.Harada , S.Hasegawa , Y.Kasugai 2016
The JSNS$^2$ (J-PARC E56) experiment aims to search for a sterile neutrino at the J-PARC Materials and Life Sciences Experimental Facility (MLF). After the submission of a proposal to the J-PARC PAC, Stage-1 approval was granted to the JSNS$^2$ experiment on April 2015.This approval followed a series of background measurements which were performed in 2014. Recently, funding (the grant-in-aid for scientific research (S)) in Japan for building one 25~ton fiducial volume detector module was approved for the experiment. Therefore, we aim to start the experiment with one detector in JFY2018-2019. We are now working to produce precise cost estimates and schedule for construction, noting that most of the detector components can be produced within one year from the date of order. This will be reported at the next PAC meeting. In parallel to the detector construction schedule, JSNS$^2$ will submit a Technical Design report (TDR) to obtain the Stage-2 approval from the J-PARC PAC.The recent progress of the R$&$D efforts towards this TDR are shown in this report. In particular, the R$&$D status of the liquid scintillator, cosmic ray veto system, and software are shown. We have performed a test-experiment using 1.6~L of liquid scintillator at the 3rd floor of the MLF building in order to determine the identities of non-neutrino background particles coming to this detector location during the proton bunch. This is the so-called MLF 2015AU0001 experiment. We briefly show preliminary results from this test-experiment.
178 - M.Harada , S.Hasegawa , Y.Kasugai 2016
The JSNS2 (J-PARC E56) experiment aims to search for sterile neutrinos at the J-PARC Materials and Life Sciences Experimental Facility (MLF).After the submission of a proposal to the J-PARC PAC, stage-1 approval was granted to the JSNS2 experiment. The approval followed a series of background measurements which were performed in 2014. Subsequent for stage-1 approval, the JSNS2 collaboration has made continuous efforts to write a Technical Design Report (TDR).This TDR will include two major items as discussed in the previous status report for the 20th J-PARC PAC: (1) A realistic detector location (2) Well understood and realistic detector performance using simulation studies, primarily in consideration of fast neutron rejection. Since August we have been in discussions with MLF staff regarding an appropriate detector location. We are also in the process of setting up a Monte Carlo (MC) simulation framework in order to study detectors performance in realistic conditions. In addition, we have pursued hardware R&D work for the liquid scintillator (LS) and to improve the dynamic range of the 10 photomultiplier tubes (PMTs). The LS R&D works includes Cherenkov studies inside the LS, and a Pulse Shape Discrimination (PSD) study with a test-beam, performed at Tohoku University. We also estimate the PSD performance of a full-sized detector using a detailed MC simulation. In this status report, we describe progress on this work.
177 - S.Ajimura , M.K.Cheoun , J.H.Choi 2017
In this document, the technical details of the JSNS$^2$ (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment are described. The search for sterile neutrinos is currently one of the hottest topics in neutrino physics. The JSNS$^2$ experiment aims to search for the existence of neutrino oscillations with $Delta m^2$ near 1 eV$^2$ at the J-PARC Materials and Life Science Experimental Facility (MLF). A 1 MW beam of 3 GeV protons incident on a spallation neutron target produces an intense neutrino beam from muon decay at rest. Neutrinos come predominantly from $mu^+$ decay: $mu^{+} to e^{+} + bar{ u}_{mu} + u_{e}$. The experiment will search for $bar{ u}_{mu}$ to $bar{ u}_{e}$ oscillations which are detected by the inverse beta decay interaction $bar{ u}_{e} + p to e^{+} + n$, followed by gammas from neutron capture on Gd. The detector has a fiducial volume of 17 tons and is located 24 meters away from the mercury target. JSNS$^2$ offers the ultimate direct test of the LSND anomaly. In addition to the sterile neutrino search, the physics program includes cross section measurements with neutrinos with a few 10s of MeV from muon decay at rest and with monochromatic 236 MeV neutrinos from kaon decay at rest. These cross sections are relevant for our understanding of supernova explosions and nuclear physics.
The J-PARC E56 experiment aims to search for sterile neutrinos at the J-PARC Materials and Life Science Experimental Facility (MLF). In order to examine the feasibility of the experiment, we measured the background rates of different detector candidate sites, which are located at the third floor of the MLF, using a detector consisting of plastic scintillators with a fiducial mass of 500 kg. The result of the measurements is described in this article. The gammas and neutrons induced by the beam as well as the backgrounds from the cosmic rays were measured.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا