No Arabic abstract
In this letter, we consider the detection of sparse stochastic signals with sensor networks (SNs), where the fusion center (FC) collects 1-bit data from the local sensors and then performs global detection. For this problem, a newly developed 1-bit locally most powerful test (LMPT) detector requires 3.3Q sensors to asymptotically achieve the same detection performance as the centralized LMPT (cLMPT) detector with Q sensors. This 1-bit LMPT detector is based on 1-bit quantized observations without any additional processing at the local sensors. However, direct quantization of observations is not the most efficient processing strategy at the sensors since it incurs unnecessary information loss. In this letter, we propose an improved-1-bit LMPT (Im-1-bit LMPT) detector that fuses local 1-bit quantized likelihood ratios (LRs) instead of directly quantized local observations. In addition, we design the quantization thresholds at the local sensors to ensure asymptotically optimal detection performance of the proposed detector. It is shown theoretically and numerically that, with the designed quantization thresholds, the proposed Im-1-bit LMPT detector for the detection of sparse signals requires less number of sensor nodes to compensate for the performance loss caused by 1-bit quantization.
One of the main drawbacks of the well-known Direct Position Determination (DPD) method is the requirement that raw signal data be transferred to a common processor. It would therefore be of high practical value if DPD$-$or a modified version thereof$-$could be successfully applied to a coarsely quantized version of the raw data, thus alleviating the requirements on the communication links between the different base stations. Motivated by the above, and inspired by recent work in the rejuvenated one-bit array processing field, we present One-Bit DPD: a method for direct localization based on one-bit quantized measurements. We show that despite the coarse quantization, the proposed method nonetheless yields an estimate for the unknown emitter position with appealing asymptotic properties. We further establish the underlying identifiability conditions of this model, which rely only on second-order statistics. Empirical simulation results corroborate our analytical derivations, demonstrating that much of the information regarding the unknown emitter position is preserved under this crude form of quantization.
In this paper we investigate fusion rules for distributed detection in large random clustered-wireless sensor networks (WSNs) with a three-tier hierarchy; the sensor nodes (SNs), the cluster heads (CHs) and the fusion center (FC). The CHs collect the SNs local decisions and relay them to the FC that then fuses them to reach the ultimate decision. The SN-CH and the CH-FC channels suffer from additive white Gaussian noise (AWGN). In this context, we derive the optimal log-likelihood ratio (LLR) fusion rule, which turns out to be intractable. So, we develop a sub-optimal linear fusion rule (LFR) that weighs the clusters data according to both its local detection performance and the quality of the communication channels. In order to implement it, we propose an approximate maximum likelihood based LFR (LFR-aML), which estimates the required parameters for the LFR. We also derive Gaussian-tail upper bounds for the detection and false alarms probabilities for the LFR. Furthermore, an optimal CH transmission power allocation strategy is developed by solving the Karush-Kuhn-Tucker (KKT) conditions for the related optimization problem. Extensive simulations show that the LFR attains a detection performance near to that of the optimal LLR and confirms the validity of the proposed upper bounds. Moreover, when compared to equal power allocation, simulations show that our proposed power allocation strategy achieves a significant power saving at the expense of a small reduction in the detection performance.
We study the maximum score statistic to detect and estimate local signals in the form of change-points in the level, slope, or other property of a sequence of observations, and to segment the sequence when there appear to be multiple changes. We find that when observations are serially dependent, the change-points can lead to upwardly biased estimates of autocorrelations, resulting in a sometimes serious loss of power. Examples involving temperature variations, the level of atmospheric greenhouse gases, suicide rates and daily incidence of COVID-19 illustrate the general theory.
This work focuses on the reconstruction of sparse signals from their 1-bit measurements. The context is the one of 1-bit compressive sensing where the measurements amount to quantizing (dithered) random projections. Our main contribution shows that, in addition to the measurement process, we can additionally reconstruct the signal with a binarization of the sensing matrix. This binary representation of both the measurements and sensing matrix can dramatically simplify the hardware architecture on embedded systems, enabling cheaper and more power efficient alternatives. Within this framework, given a sensing matrix respecting the restricted isometry property (RIP), we prove that for any sparse signal the quantized projected back-projection (QPBP) algorithm achieves a reconstruction error decaying like O(m-1/2)when the number of measurements m increases. Simulations highlight the practicality of the developed scheme for different sensing scenarios, including random partial Fourier sensing.
Sparse array arrangement has been widely used in vector-sensor arrays because of increased degree-of-freedoms for identifying more sources than sensors. For large-size sparse vector-sensor arrays, one-bit measurements can further reduce the receiver system complexity by using low-resolution ADCs. In this paper, we present a sparse cross-dipole array with one-bit measurements to estimate Direction of Arrivals (DOA) of electromagnetic sources. Based on the independence assumption of sources, we establish the relation between the covariance matrix of one-bit measurements and that of unquantized measurements by Bussgang Theorem. Then we develop a Spatial-Smooth MUSIC (SS-MUSIC) based method, One-Bit MUSIC (OB-MUSIC), to estimate the DOAs. By jointly utilizing the covariance matrices of two dipole arrays, we find that OB-MUSIC is robust against polarization states. We also derive the Cramer-Rao bound (CRB) of DOA estimation for the proposed scheme. Furthermore, we theoretically analyze the applicability of the independence assumption of sources, which is the fundamental of the proposed and other typical methods, and verify the assumption in typical communication applications. Numerical results show that, with the same number of sensors, one-bit sparse cross-dipole arrays have comparable performance with unquantized uniform linear arrays and thus provide a compromise between the DOA estimation performance and the system complexity.