Do you want to publish a course? Click here

On Parameter Optimization of Product Codes for Iterative Bounded Distance Decoding with Scaled Reliability

125   0   0.0 ( 0 )
 Added by Alireza Sheikh
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We use density evolution to optimize the parameters of binary product codes (PCs) decoded based on the recently introduced iterative bounded distance decoding with scaled reliability. We show that binary PCs with component codes of 3-bit error correcting capability provide the best performance-complexity trade-off.



rate research

Read More

We propose a modified iterative bounded distance decoding of product codes. The proposed algorithm is based on exchanging hard messages iteratively and exploiting channel reliabilities to make hard decisions at each iteration. Performance improvements up to 0.26 dB are achieved.
We propose a novel soft-aided iterative decoding algorithm for product codes (PCs). The proposed algorithm, named iterative bounded distance decoding with combined reliability (iBDD-CR), enhances the conventional iterative bounded distance decoding (iBDD) of PCs by exploiting some level of soft information. In particular, iBDD-CR can be seen as a modification of iBDD where the hard decisions of the row and column decoders are made based on a reliability estimate of the BDD outputs. The reliability estimates are derived using extrinsic message passing for generalized low-density-parity check (GLDPC) ensembles, which encompass PCs. We perform a density evolution analysis of iBDD-CR for transmission over the additive white Gaussian noise channel for the GLDPC ensemble. We consider both binary transmission and bit-interleaved coded modulation with quadrature amplitude modulation.We show that iBDD-CR achieves performance gains up to $0.51$ dB compared to iBDD with the same internal decoder data flow. This makes the algorithm an attractive solution for very high-throughput applications such as fiber-optic communications.
We propose a binary message passing decoding algorithm for product codes based on generalized minimum distance decoding (GMDD) of the component codes, where the last stage of the GMDD makes a decision based on the Hamming distance metric. The proposed algorithm closes half of the gap between conventional iterative bounded distance decoding (iBDD) and turbo product decoding based on the Chase--Pyndiah algorithm, at the expense of some increase in complexity. Furthermore, the proposed algorithm entails only a limited increase in data flow compared to iBDD.
We propose a novel binary message passing decoding algorithm for product-like codes based on bounded distance decoding (BDD) of the component codes. The algorithm, dubbed iterative BDD with scaled reliability (iBDD-SR), exploits the channel reliabilities and is therefore soft in nature. However, the messages exchanged by the component decoders are binary (hard) messages, which significantly reduces the decoder data flow. The exchanged binary messages are obtained by combining the channel reliability with the BDD decoder output reliabilities, properly conveyed by a scaling factor applied to the BDD decisions. We perform a density evolution analysis for generalized low-density parity-check (GLDPC) code ensembles and spatially coupled GLDPC code ensembles, from which the scaling factors of the iBDD-SR for product and staircase codes, respectively, can be obtained. For the white additive Gaussian noise channel, we show performance gains up to $0.29$ dB and $0.31$ dB for product and staircase codes compared to conventional iterative BDD (iBDD) with the same decoder data flow. Furthermore, we show that iBDD-SR approaches the performance of ideal iBDD that prevents miscorrections.
We study low-complexity iterative decoding algorithms for product codes. We revisit two algorithms recently proposed by the authors based on bounded distance decoding (BDD) of the component codes that improve the performance of conventional iterative BDD (iBDD). We then propose a novel decoding algorithm that is based on generalized minimum distance decoding of the component codes. The proposed algorithm closes over 50% of the performance gap between iBDD and turbo product decoding (TPD) based on the Chase-Pyndiah algorithm. Moreover, the algorithm only leads to a limited increase in complexity with respect to iBDD and has significantly lower complexity than TPD. The studied algorithms are particularly interesting for high-throughput fiber-optic communications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا