Do you want to publish a course? Click here

An Evaluation of Feature Matchers for Fundamental Matrix Estimation

132   0   0.0 ( 0 )
 Added by Jiawang Bian
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Matching two images while estimating their relative geometry is a key step in many computer vision applications. For decades, a well-established pipeline, consisting of SIFT, RANSAC, and 8-point algorithm, has been used for this task. Recently, many new approaches were proposed and shown to outperform previous alternatives on standard benchmarks, including the learned features, correspondence pruning algorithms, and robust estimators. However, whether it is beneficial to incorporate them into the classic pipeline is less-investigated. To this end, we are interested in i) evaluating the performance of these recent algorithms in the context of image matching and epipolar geometry estimation, and ii) leveraging them to design more practical registration systems. The experiments are conducted in four large-scale datasets using strictly defined evaluation metrics, and the promising results provide insight into which algorithms suit which scenarios. According to this, we propose three high-quality matching systems and a Coarse-to-Fine RANSAC estimator. They show remarkable performances and have potentials to a large part of computer vision tasks. To facilitate future research, the full evaluation pipeline and the proposed methods are made publicly available.



rate research

Read More

Feature matching is one of the most fundamental and active research areas in computer vision. A comprehensive evaluation of feature matchers is necessary, since it would advance both the development of this field and also high-level applications such as Structure-from-Motion or Visual SLAM. However, to the best of our knowledge, no previous work targets the evaluation of feature matchers while they only focus on evaluating feature detectors and descriptors. This leads to a critical absence in this field that there is no standard datasets and evaluation metrics to evaluate different feature matchers fairly. To this end, we present the first uniform feature matching benchmark to facilitate the evaluation of feature matchers. In the proposed benchmark, matchers are evaluated in different aspects, involving matching ability, correspondence sufficiency, and efficiency. Also, their performances are investigated in different scenes and in different matching types. Subsequently, we carry out an extensive evaluation of different state-of-the-art matchers on the benchmark and make in-depth analyses based on the reported results. This can be used to design practical matching systems in real applications and also advocates the potential future research directions in the field of feature matching.
Estimating fundamental matrices is a classic problem in computer vision. Traditional methods rely heavily on the correctness of estimated key-point correspondences, which can be noisy and unreliable. As a result, it is difficult for these methods to handle image pairs with large occlusion or significantly different camera poses. In this paper, we propose novel neural network architectures to estimate fundamental matrices in an end-to-end manner without relying on point correspondences. New modules and layers are introduced in order to preserve mathematical properties of the fundamental matrix as a homogeneous rank-2 matrix with seven degrees of freedom. We analyze performance of the proposed models using various metrics on the KITTI dataset, and show that they achieve competitive performance with traditional methods without the need for extracting correspondences.
We review the most recent RANSAC-like hypothesize-and-verify robust estimators. The best performing ones are combined to create a state-of-the-art version of the Universal Sample Consensus (USAC) algorithm. A recent objective is to implement a modular and optimized framework, making future RANSAC modules easy to be included. The proposed method, USACv20, is tested on eight publicly available real-world datasets, estimating homographies, fundamental and essential matrices. On average, USACv20 leads to the most geometrically accurate models and it is the fastest in comparison to the state-of-the-art robust estimators. All reported properties improved performance of original USAC algorithm significantly. The pipeline will be made available after publication.
83 - Bao Zhao , Xiaobo Chen , Xinyi Le 2019
3D local feature extraction and matching is the basis for solving many tasks in the area of computer vision, such as 3D registration, modeling, recognition and retrieval. However, this process commonly draws into false correspondences, due to noise, limited features, occlusion, incomplete surface and etc. In order to estimate accurate transformation based on these corrupted correspondences, numerous transformation estimation techniques have been proposed. However, the merits, demerits and appropriate application for these methods are unclear owing to that no comprehensive evaluation for the performance of these methods has been conducted. This paper evaluates eleven state-of-the-art transformation estimation proposals on both descriptor based and synthetic correspondences. On descriptor based correspondences, several evaluation items (including the performance on different datasets, robustness to different overlap ratios and the performance of these technique combined with Iterative Closest Point (ICP), different local features and LRF/A techniques) of these methods are tested on four popular datasets acquired with different devices. On synthetic correspondences, the robustness of these methods to varying percentages of correct correspondences (PCC) is evaluated. In addition, we also evaluate the efficiencies of these methods. Finally, the merits, demerits and application guidance of these tested transformation estimation methods are summarized.
Optical flow estimation with occlusion or large displacement is a problematic challenge due to the lost of corresponding pixels between consecutive frames. In this paper, we discover that the lost information is related to a large quantity of motion features (more than 40%) computed from the popular discriminative cost-volume feature would completely vanish due to invalid sampling, leading to the low efficiency of optical flow learning. We call this phenomenon the Vanishing Cost Volume Problem. Inspired by the fact that local motion tends to be highly consistent within a short temporal window, we propose a novel iterative Motion Feature Recovery (MFR) method to address the vanishing cost volume via modeling motion consistency across multiple frames. In each MFR iteration, invalid entries from original motion features are first determined based on the current flow. Then, an efficient network is designed to adaptively learn the motion correlation to recover invalid features for lost-information restoration. The final optical flow is then decoded from the recovered motion features. Experimental results on Sintel and KITTI show that our method achieves state-of-the-art performances. In fact, MFR currently ranks second on Sintel public website.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا