Do you want to publish a course? Click here

Destructive quantum interference in transport through molecules with electron-electron and electron-vibration interactions

118   0   0.0 ( 0 )
 Added by Pablo Roura-Bas Dr.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the transport through a molecular junction exhibiting interference effects. We show that these effects can still be observed in the presence of molecular vibrations if Coulomb repulsion is taken into account. In the Kondo regime, the conductance of the junction can be changed by several orders of magnitude by tuning the levels of the molecule, or displacing a contact between two atoms, from nearly perfect destructive interference to values of the order of 2e 2 /h expected in Kondo systems. We also show that this large conductance change is robust for reasonable temperatures and voltages for symmetric and asymmetric tunnel couplings between the source-drain electrodes and the molecular orbitals. This is relevant for the development of quantum interference effect transistors based on molecular junctions.

rate research

Read More

In spite of its ubiquity in strongly correlated systems, the competition of paired and nematic ground states remains poorly understood. Recently such a competition was reported in the two-dimensional electron gas at filling factor $ u=5/2$. At this filling factor a pressure-induced quantum phase transition was observed from the paired fractional quantum Hall state to the quantum Hall nematic. Here we show that the pressure induced paired-to-nematic transition also develops at $ u=7/2$, demonstrating therefore this transition in both spin branches of the second orbital Landau level. However, we find that pressure is not the only parameter controlling this transition. Indeed, ground states consistent with those observed under pressure also develop in a sample measured at ambient pressure, but in which the electron-electron interaction was tuned close to its value at the quantum critical point. Our experiments suggest that electron-electron interactions play a critical role in driving the paired-to-nematic transition.
The low temperature properties of single level molecular quantum dots including both, electron-electron and electron-vibration interactions, are theoretically investigated. The calculated differential conductance in the Kondo regime exhibits not only the zero bias anomaly but also side peaks located at bias voltages which coincide with multiples of the energy of vibronic mode $V sim hbarOmega/e$. We obtain that the evolution with temperature of the two main satellite conductance peaks follows the corresponding one of the Kondo peak when $hbarOmega gg k_B T_K$, being $ T_K$ the Kondo temperature, in agreement with recent transport measurements in molecular junctions. However, we find that this is no longer valid when $ hbarOmega$ is of the order of a few times $k_B T_K$.
Using a first principles approach, we study the electron transport properties of a new class of molecular wires containing fluorenone units, whose features open up new possibilities for controlling transport through a single molecule. We show that the presence of side groups attached to these units leads to Fano resonances close to the Fermi energy. As a consequence electron transport through the molecule can be controlled either by chemically modifying the side group, or by changing the conformation of the side group. This sensitivity, opens up new possibilities for novel single-molecule sensors. We also show that transport can be controlled by tilting a molecule with respect to the electrode surfaces. Our results compare favorably with recent experiments.
The interplay of Coulomb and electron-phonon interactions with thermal and quantum fluctuations facilitates rich phase diagrams in two-dimensional electron systems. Layered transition metal dichalcogenides hosting charge, excitonic, spin and superconducting order form an epitomic material class in this respect. Theoretical studies of materials like NbS$_2$ have focused on the electron-phonon coupling whereas the Coulomb interaction, particularly strong in the monolayer limit, remained essentially untouched. Here, we analyze the interplay of short- and long-range Coulomb as well as electron-phonon interactions in NbS$_2$ monolayers. The combination of these interactions causes electronic correlations that are fundamentally different to what would be expected from the interaction terms separately. The fully interacting electronic spectral function resembles the non-interacting band structure but with appreciable broadening. An unexpected coexistence of strong charge and spin fluctuations puts NbS$_2$ close to spin and charge order, suggesting monolayer NbS$_2$ as a platform for atomic scale engineering of electronic quantum phases.
Twisted bilayer graphene (tBLG) has recently emerged as a platform for hosting correlated phenomena, owing to the exceptionally flat band dispersion that results near interlayer twist angle $thetaapprox1.1^circ$. At low temperature a variety of phases are observed that appear to be driven by electron interactions including insulating states, superconductivity, and magnetism. Electrical transport in the high temperature regime has received less attention but is also highly anomalous, exhibiting gigantic resistance enhancement and non-monotonic temperature dependence. Here we report on the evolution of the scattering mechanisms in tBLG over a wide range of temperature and for twist angle varying from 0.75$^circ$ - 2$^circ$. We find that the resistivity, $rho$, exhibits three distinct phenomenological regimes as a function of temperature, $T$. At low $T$ the response is dominated by correlation and disorder physics; at high $T$ by thermal activation to higher moire subbands; and at intermediate temperatures $rho$ varies linearly with $T$. The $T$-linear response is much larger than in monolayer graphenefor all measured twist angles, and increases by more than three orders of magnitude for $theta$ near the flat-band condition. Our results point to the dominant role of electron-phonon scattering in twisted layer systems, with possible implications for the origin of the observed superconductivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا