No Arabic abstract
Let us call a (para)topological group emph{strongly submetrizable} if it admits a coarser separable metrizable (para)topological group topology. We present a characterization of simply $sm$-factorizable (para)topo-logical groups by means of continuous real-valued functions. We show that a (para)topo-logical group $G$ is a simply $sm$-factorizable if and only if for each continuous function $fcolon Gto mathbb{R}$, one can find a continuous homomorphism $varphi$ of $G$ onto a strongly submetrizable (para)topological group $H$ and a continuous function $gcolon Hto mathbb{R}$ such that $f=gcircvarphi$. This characterization is applied for the study of completions of simply $sm$-factorizable topological groups. We prove that the equalities $mu{G}=varrho_omega{G}=upsilon{G}$ hold for each Hausdorff simply $sm$-factorizable topological group $G$. This result gives a positive answer to a question posed by Arhangelskii and Tkachenko in 2018. Also, we consider realcompactifications of simply $sm$-factorizable paratopological groups. It is proved, among other results, that the realcompactification, $upsilon{G}$, and the Dieudonne completion, $mu{G}$, of a regular simply $sm$-factorizable paratopological group $G$ coincide and that $upsilon{G}$ admits the natural structure of paratopological group containing $G$ as a dense subgroup and, furthermore, $upsilon{G}$ is also simply $sm$-factorizable. Some results in [emph{Completions of paratopological groups, Monatsh. Math. textbf{183} (2017), 699--721}] are improved or generalized.
We prove that the semigroup operation of a topological semigroup $S$ extends to a continuous semigroup operation on its the Stone-v{C}ech compactification $beta S$ provided $S$ is a pseudocompact openly factorizable space, which means that each map $f:Sto Y$ to a second countable space $Y$ can be written as the composition $f=gcirc p$ of an open map $p:Xto Z$ onto a second countable space $Z$ and a map $g:Zto Y$. We present a spectral characterization of openly factorizable spaces and establish some properties of such spaces.
It is proved that any countable topological group in which the filter of neighborhoods of the identity element is not rapid contains a discrete set with precisely one nonisolated point. This gives a negative answer to Protasovs question on the existence in ZFC of a countable nondiscrete group in which all discrete subsets are closed. It is also proved that the existence of a countable nondiscrete extremally disconnected group implies the existence of a rapid ultrafilter and, hence, a countable nondiscrete extremally disconnected group cannot be constructed in ZFC.
Known and new results on free Boolean topological groups are collected. An account of properties which these groups share with free or free Abelian topological groups and properties specific of free Boolean groups is given. Special emphasis is placed on the application of set-theoretic methods to the study of Boolean topological groups.
A Hausdorff topological group is called minimal if it does not admit a strictly coarser Hausdorff group topology. This paper mostly deals with the topological group $H_+(X)$ of order-preserving homeomorphisms of a compact linearly ordered connected space $X$. We provide a sufficient condition on $X$ under which the topological group $H_+(X)$ is minimal. This condition is satisfied, for example, by: the unit interval, the ordered square, the extended long line and the circle (endowed with its cyclic order). In fact, these groups are even $a$-minimal, meaning, in this setting, that the compact-open topology on $G$ is the smallest Hausdorff group topology on $G$. One of the key ideas is to verify that for such $X$ the Zariski and the Markov topologies on the group $H_+(X)$ coincide with the compact-open topology. The technique in this article is mainly based on a work of Gartside and Glyn.
We discuss various modifications of separability, precompactnmess and narrowness in topological groups and test those modifications in the permutation groups $S(X)$ and $S_{<omega}(X)$.