Do you want to publish a course? Click here

Phase diagram and quantum criticality of Heisenberg spin chains with Ising-like interchain couplings -- Implication to YbAlO$_3$

110   0   0.0 ( 0 )
 Added by Rong Yu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by recent progress on field-induced phase transitions in quasi-one-dimensional quantum antiferromagnets, we study the phase diagram of $S=1/2$ antiferromagnetic Heisenberg chains with Ising anisotropic interchain couplings under a longitudinal magnetic field via large-scale quantum Monte Carlo simulations. The interchain interactions is shown to enhance longitudinal spin correlations to stabilize an incommensurate longitudinal spin density wave order at low temperatures. With increasing field the ground state changes to a canted antiferromagnetic order until the magnetization fully saturates above a quantum critical point controlled by the $(3+2)$D XY universality. Increasing temperature in the quantum critical regime the system experiences a fascinating dimension crossover to a universal Tomonaga-Luttinger liquid. The calculated NMR relaxation rate $1/T_1$ indicates this Luttinger liquid behavior survives a broad field and temperature regime. Our results determine the global phase diagram and quantitative features of quantum criticality of a general model for quasi-one-dimensional spin chain compounds, and thus lay down a concrete ground to the study on these materials.



rate research

Read More

We report on magnetization, sound velocity, and magnetocaloric-effect measurements of the Ising-like spin-1/2 antiferromagnetic chain system BaCo$_2$V$_2$O$_8$ as a function of temperature down to 1.3 K and applied transverse magnetic field up to 60 T. While across the N{e}el temperature of $T_Nsim5$ K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity $v(B)$ and a clear minimum of temperature $T(B)$ at $B^{c,3D}_perp=21.4$ T, indicating the suppression of the antiferromagnetic order. At higher fields, the $T(B)$ curve shows a broad minimum at $B^c_perp = 40$ T, accompanied by a broad minimum in the sound velocity and a saturation-like magnetization. These features signal a quantum phase transition which is further characterized by the divergent behavior of the Gr{u}neisen parameter $Gamma_B propto (B-B^{c}_perp)^{-1}$. By contrast, around the critical field, the Gr{u}neisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.
We show that a chain of Heisenberg spins interacting with long-range dipolar forces in a magnetic field h perpendicular to the chain exhibits a quantum critical point belonging to the two-dimensional Ising universality class. Within linear spin-wave theory the magnon dispersion for small momenta k is [Delta^2 + v_k^2 k^2]^{1/2}, where Delta^2 propto |h - h_c| and v_k^2 propto |ln k|. For fields close to h_c linear spin-wave theory breaks down and we investigate the system using density-matrix and functional renormalization group methods. The Ginzburg regime where non-Gaussian fluctuations are important is found to be rather narrow on the ordered side of the transition, and very broad on the disordered side.
149 - V. A. Sidorov , Xin Lu , T. Park 2013
We report the temperature-pressure (T-P) phase diagram of CePt2In7 single crystals, especially the pressure evolution of the antiferromagnetic order and the emergence of superconductivity, which have been studied by electrical resistivity and ac calorimetry under nearly hydrostatic environments. Compared with its polycrystalline counterpart, bulk superconductivity coexists with antiferromagnetism in a much narrower pressure region. The possible existence of textured superconductivity and local quantum criticality also are observed in CePt2In7, exhibiting a remarkable similarity with CeRhIn5.
The ground state spin-wave excitations and thermodynamic properties of two types of ferrimagnetic chains are investigated: the alternating spin-1/2 spin-5/2 chain and a similar chain with a spin-1/2 pendant attached to the spin-5/2 site. Results for magnetic susceptibility, magnetization and specific heat are obtained through the finite-temperature Lanczos method with the aim in describing available experimental data, as well as comparison with theoretical results from the semiclassical approximation and the low-temperature susceptibility expansion derived from Takahashis modified spin-wave theory. In particular, we study in detail the temperature vs. magnetic field phase diagram of the spin-1/2 spin-5/2 chain, in which several low-temperature quantum phases are identified: the Luttinger Liquid phase, the ferrimagnetic plateau and the fully polarized one, and the respective quantum critical points and crossover lines.
107 - M. Hoffmann , K. Dey , J. Werner 2021
High-quality single crystals of CoTiO$_3$ are grown and used to elucidate in detail structural and magnetostructural effects by means of high-resolution capacitance dilatometry studies in fields up to 15 T which are complemented by specific heat and magnetization measurements. In addition, we refine the single-crystal structure of the ilmenite ($Rbar{3}$) phase. At the antiferromagnetic ordering temperature $T_mathrm{N}$, pronounced $lambda$-shaped anomaly in the thermal expansion coefficients signals shrinking of both the $c$ and $b$ axes, indicating strong magnetoelastic coupling with uniaxial pressure along $c$ yielding six times larger effect on $T_mathrm{N}$ than the pressure applied in-plane. The hydrostatic pressure dependency derived by means of Gruneisen analysis amounts to $partial T_mathrm{N}/ partial papprox 2.7(4)$~K/GPa. The high-field magnetization studies in static and pulsed magnetic fields up to 60~T along with high-field thermal expansion measurements facilitate in constructing the complete anisotropic magnetic phase diagram of CoTiO$_3$. While the results confirm the presence of significant magnetodielectric coupling, our data show that magnetism drives the observed structural, dielectric, and magnetic changes both in the short-range ordered regime well-above $T_mathrm{N}$ as well as in the long-range magnetically ordered phase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا