Do you want to publish a course? Click here

Transferability and Hardness of Supervised Classification Tasks

106   0   0.0 ( 0 )
 Added by Cuong Nguyen
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We propose a novel approach for estimating the difficulty and transferability of supervised classification tasks. Unlike previous work, our approach is solution agnostic and does not require or assume trained models. Instead, we estimate these values using an information theoretic approach: treating training labels as random variables and exploring their statistics. When transferring from a source to a target task, we consider the conditional entropy between two such variables (i.e., label assignments of the two tasks). We show analytically and empirically that this value is related to the loss of the transferred model. We further show how to use this value to estimate task hardness. We test our claims extensively on three large scale data sets -- CelebA (40 tasks), Animals with Attributes 2 (85 tasks), and Caltech-UCSD Birds 200 (312 tasks) -- together representing 437 classification tasks. We provide results showing that our hardness and transferability estimates are strongly correlated with empirical hardness and transferability. As a case study, we transfer a learned face recognition model to CelebA attribute classification tasks, showing state of the art accuracy for tasks estimated to be highly transferable.



rate research

Read More

Transferability estimation is an essential problem in transfer learning to predict how good the performance is when transferring a source model (or source task) to a target task. Recent analytical transferability metrics have been widely used for source model selection and multi-task learning. A major challenge is how to make transfereability estimation robust under the cross-domain cross-task settings. The recently proposed OTCE score solves this problem by considering both domain and task differences, with the help of transfer experiences on auxiliary tasks, which causes an efficiency overhead. In this work, we propose a practical transferability metric called JC-NCE score that dramatically improves the robustness of the task difference estimation in OTCE, thus removing the need for auxiliary tasks. Specifically, we build the joint correspondences between source and target data via solving an optimal transport problem with a ground cost considering both the sample distance and label distance, and then compute the transferability score as the negative conditional entropy of the matched labels. Extensive validations under the intra-dataset and inter-dataset transfer settings demonstrate that our JC-NCE score outperforms the auxiliary-task free version of OTCE for 7% and 12%, respectively, and is also more robust than other existing transferability metrics on average.
In few-shot classification, we are interested in learning algorithms that train a classifier from only a handful of labeled examples. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning algorithm is defined and trained on episodes representing different classification problems, each with a small labeled training set and its corresponding test set. In this work, we advance this few-shot classification paradigm towards a scenario where unlabeled examples are also available within each episode. We consider two situations: one where all unlabeled examples are assumed to belong to the same set of classes as the labeled examples of the episode, as well as the more challenging situation where examples from other distractor classes are also provided. To address this paradigm, we propose novel extensions of Prototypical Networks (Snell et al., 2017) that are augmented with the ability to use unlabeled examples when producing prototypes. These models are trained in an end-to-end way on episodes, to learn to leverage the unlabeled examples successfully. We evaluate these methods
Recent results show that features of adversarially trained networks for classification, in addition to being robust, enable desirable properties such as invertibility. The latter property may seem counter-intuitive as it is widely accepted by the community that classification models should only capture the minimal information (features) required for the task. Motivated by this discrepancy, we investigate the dual relationship between Adversarial Training and Information Theory. We show that the Adversarial Training can improve linear transferability to new tasks, from which arises a new trade-off between transferability of representations and accuracy on the source task. We validate our results employing robust networks trained on CIFAR-10, CIFAR-100 and ImageNet on several datasets. Moreover, we show that Adversarial Training reduces Fisher information of representations about the input and of the weights about the task, and we provide a theoretical argument which explains the invertibility of deterministic networks without violating the principle of minimality. Finally, we leverage our theoretical insights to remarkably improve the quality of reconstructed images through inversion.
232 - Nicolo Colombo , Yang Gao 2020
The history of deep learning has shown that human-designed problem-specific networks can greatly improve the classification performance of general neural models. In most practical cases, however, choosing the optimal architecture for a given task remains a challenging problem. Recent architecture-search methods are able to automatically build neural models with strong performance but fail to fully appreciate the interaction between neural architecture and weights. This work investigates the problem of disentangling the role of the neural structure and its edge weights, by showing that well-trained architectures may not need any link-specific fine-tuning of the weights. We compare the performance of such weight-free networks (in our case these are binary networks with {0, 1}-valued weights) with random, weight-agnostic, pruned and standard fully connected networks. To find the optimal weight-agnostic network, we use a novel and computationally efficient method that translates the hard architecture-search problem into a feasible optimization problem.More specifically, we look at the optimal task-specific architectures as the optimal configuration of binary networks with {0, 1}-valued weights, which can be found through an approximate gradient descent strategy. Theoretical convergence guarantees of the proposed algorithm are obtained by bounding the error in the gradient approximation and its practical performance is evaluated on two real-world data sets. For measuring the structural similarities between different architectures, we use a novel spectral approach that allows us to underline the intrinsic differences between real-valued networks and weight-free architectures.
Recent convolutional neural networks (CNNs) have led to impressive performance but often suffer from poor calibration. They tend to be overconfident, with the model confidence not always reflecting the underlying true ambiguity and hardness. In this paper, we propose angular visual hardness (AVH), a score given by the normalized angular distance between the sample feature embedding and the target classifier to measure sample hardness. We validate this score with an in-depth and extensive scientific study, and observe that CNN models with the highest accuracy also have the best AVH scores. This agrees with an earlier finding that state-of-art models improve on the classification of harder examples. We observe that the training dynamics of AVH is vastly different compared to the training loss. Specifically, AVH quickly reaches a plateau for all samples even though the training loss keeps improving. This suggests the need for designing better loss functions that can target harder examples more effectively. We also find that AVH has a statistically significant correlation with human visual hardness. Finally, we demonstrate the benefit of AVH to a variety of applications such as self-training for domain adaptation and domain generalization.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا