Do you want to publish a course? Click here

UV considerations on scattering amplitudes in a web of theories

199   0   0.0 ( 0 )
 Added by Laurentiu Rodina
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The scattering predictions of a web of theories including Yang-Mills (YM), gravity, bi-adjoint scalar, the non-linear sigma model (NLSM), Dirac-Born-Infeld-Volkov-Akulov (DBI-VA) and the special Galileon (sGal) form a class of special objects with two fascinating properties: they are related by the double-copy procedure, and they can be defined purely by on-shell constraints. We expand on both of these properties. First we show that NLSM tree-level amplitudes are fully determined by imposing color-dual structure together with cyclic invariance and locality. We then consider how hard-scaling can be used to constrain the predictions of these theories, as opposed to the usual soft-scaling. We probe the UV by generalizing the familiar BCFW shift off-shell to a novel single hard limit. We show that UV scalings are sufficient to fully constrain: 1. Bi-adjoint doubly-ordered amplitudes, assuming locality; 2. NLSM and BI, assuming locality and unitarity; 3. Special Galileon, assuming locality, unitarity, and a UV bound for the general Galileon vertex. We see how potentially distinct aspects of this UV behavior can be understood and unified via double-copy relations. Surprisingly, we find evidence that assuming unitarity for these theories may not be necessary, and can emerge via UV considerations and locality alone. These results complete the observations that, like IR considerations, UV scaling is sufficient to fully constrain a wide range of tree-level amplitudes, for both gauge, gravity, and effective field theories.



rate research

Read More

We perform a comprehensive study of on-shell recursion relations for Born amplitudes in spontaneously broken gauge theories and identify the minimal shifts required to construct amplitudes with a given particle content and spin quantum numbers. We show that two-line or three-line shifts are sufficient to construct all amplitudes with five or more particles, apart from amplitudes involving longitudinal vector bosons or scalars, which may require at most five-line shifts. As an application, we revisit selection rules for multi-boson amplitudes using on-shell recursion and little-group transformations.
67 - Swarnendu Sarkar 2002
UV/IR mixing is one of the most important features of noncommutative field theories. As a consequence of this coupling of the UV and IR sectors, the configuration of fields at the zero momentum limit in these theories is a very singular configuration. We show that the renormalization conditions set at a particular momentum configuration with a fixed number of zero momenta, renormalizes the Greens functions for any general momenta only when this configuration has same set of zero momenta. Therefore only when renormalization conditions are set at a point where all the external momenta are nonzero, the quantum theory is renormalizable for all values of nonzero momentum. This arises as a result of different scaling behaviors of Greens functions with respect to the UV cutoff ($Lambda$) for configurations containing different set of zero momenta. We study this in the noncommutative $phi^4$ theory and analyse similar results for the Gross-Neveu model at one loop level. We next show this general feature using Wilsonian RG of Polchinski in the globally O(N) symmetric scalar theory and prove the renormalizability of the theory to all orders with an infrared cutoff. In the context of spontaneous symmetry breaking (SSB) in noncommutative scalar theory, it is essential to note the different scaling behaviors of Greens functions with respect to $Lambda$ for different set of zero momenta configurations. We show that in the broken phase of the theory the Ward identities are satisfied to all orders only when one keeps an infrared regulator by shifting to a nonconstant vacuum.
81 - Charles B. Thorn 2016
We calculate some tree level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a lightcone worldsheet which supports $s$ integer moded Grassmann fields. In the generalization we supplement this Grassmann worldsheet system with $d=24-s$ transverse coordinate worldsheet fields. The protostring corresponds to $s=24$ and the bosonic string to $s=0$. The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that $s$ is even we calculate the multi-string scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstams interacting string formalism to a system of $s/2$ compactified and $d$ uncompactified bosonic worldsheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then study in detail some simple special cases. Multi-string processes with maximal helicity violation have much simplified amplitudes. We also specialize to general four string amplitudes and discuss their high energy behavior. Most of these models are not covariant under the full Lorentz group $O(d+1,1)$. The exceptions are the bosonic string whose Lorentz group is $O(25,1)$ and the protostring whose Lorentz group is $O(1,1)$. The models in between only enjoy an $O(1,1)times O(d)$ spacetime symmetry.
Celestial amplitudes represent 4D scattering of particles in boost, rather than the usual energy-momentum, eigenstates and hence are sensitive to both UV and IR physics. We show that known UV and IR properties of quantum gravity translate into powerful constraints on the analytic structure of celestial amplitudes. For example the soft UV behavior of quantum gravity is shown to imply that the exact four-particle scattering amplitude is meromorphic in the complex boost weight plane with poles confined to even integers on the negative real axis. Would-be poles on the positive real axis from UV asymptotics are shown to be erased by a flat space analog of the AdS resolution of the bulk point singularity. The residues of the poles on the negative axis are identified with operator coefficients in the IR effective action. Far along the real positive axis, the scattering is argued to grow exponentially according to the black hole area law. Exclusive amplitudes are shown to simply factorize into conformally hard and conformally soft factors. The soft factor contains all IR divergences and is given by a celestial current algebra correlator of Goldstone bosons from spontaneously broken asymptotic symmetries. The hard factor describes the scattering of hard particles together with the boost-eigenstate clouds of soft photons or gravitons required by asymptotic symmetries. These provide an IR safe $mathcal{S}$-matrix for the scattering of hard particles.
The question of whether BPS invariants are protected in maximally supersymmetric Yang-Mills theories is investigated from the point of view of algebraic renormalisation theory. The protected invariants are those whose cohomology type differs from that of the action. It is confirmed that one-half BPS invariants ($F^4$) are indeed protected while the double-trace one-quarter BPS invariant ($d^2F^4$) is not protected at two loops in D=7, but is protected at three loops in D=6 in agreement with recent calculations. Non-BPS invariants, i.e. full superspace integrals, are also shown to be unprotected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا