Do you want to publish a course? Click here

Celestial Amplitudes from UV to IR

82   0   0.0 ( 0 )
 Added by Ana-Maria Raclariu
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Celestial amplitudes represent 4D scattering of particles in boost, rather than the usual energy-momentum, eigenstates and hence are sensitive to both UV and IR physics. We show that known UV and IR properties of quantum gravity translate into powerful constraints on the analytic structure of celestial amplitudes. For example the soft UV behavior of quantum gravity is shown to imply that the exact four-particle scattering amplitude is meromorphic in the complex boost weight plane with poles confined to even integers on the negative real axis. Would-be poles on the positive real axis from UV asymptotics are shown to be erased by a flat space analog of the AdS resolution of the bulk point singularity. The residues of the poles on the negative axis are identified with operator coefficients in the IR effective action. Far along the real positive axis, the scattering is argued to grow exponentially according to the black hole area law. Exclusive amplitudes are shown to simply factorize into conformally hard and conformally soft factors. The soft factor contains all IR divergences and is given by a celestial current algebra correlator of Goldstone bosons from spontaneously broken asymptotic symmetries. The hard factor describes the scattering of hard particles together with the boost-eigenstate clouds of soft photons or gravitons required by asymptotic symmetries. These provide an IR safe $mathcal{S}$-matrix for the scattering of hard particles.



rate research

Read More

146 - Nikhil Kalyanapuram 2020
The analytic structures of scattering amplitudes in gauge theory and gravity are examined on the celestial sphere. The celestial amplitudes in the two theories - computed by employing a regulated Mellin transform - can be compared at low multiplicity. It is established by direct computation that up to five external particles, the double copy relations of Kawai, Lewellen and Tye continue to hold identically, modulo certain multiplicative factors which are explicitly determined. Supersymmetric representations of the amplitudes are utilized throughout, manifesting the double copy structure between $mathcal{N}=4$ super Yang-Mills and $mathcal{N}=8$ supergravity on the celestial sphere.
Celestial and momentum space amplitudes for massless particles are related to each other by a change of basis provided by the Mellin transform. Therefore properties of celestial amplitudes have counterparts in momentum space amplitudes and vice versa. In this paper, we study the celestial avatar of dual superconformal symmetry of $mathcal{N}=4$ Yang-Mills theory. We also analyze various differential equations known to be satisfied by celestial $n$-point tree-level MHV amplitudes and identify their momentum space origins.
The persistence of the hierarchy problem points to a violation of effective field theory expectations. A compelling possibility is that this results from a physical breakdown of EFT, which may arise from correlations between ultraviolet (UV) and infrared (IR) physics. To this end, we study noncommutative field theory (NCFT) as a toy model of UV/IR mixing which generates an emergent infrared scale from ultraviolet dynamics. We explore the range of such theories where ultraviolet divergences are transmogrified into infrared scales, focusing particularly on the properties of Yukawa theory, where we identify a new infrared pole accessible in the $s$-channel of the Lorentzian theory. We further investigate the interplay between UV-finiteness and UV/IR mixing by studying properties of the softly-broken noncommutative Wess-Zumino model as soft terms are varied relative to the cutoff. While the Lorentz violation inherent to noncommutative theories may limit their direct application to the hierarchy problem, these toy models provide general lessons to guide the realization of UV/IR mixing in more realistic theories.
Our understanding of quantum correlators in cosmological spacetimes, including those that we can observe in cosmological surveys, has improved qualitatively in the past few years. Now we know many constraints that these objects must satisfy as consequences of general physical principles, such as symmetries, unitarity and locality. Using this new understanding, we derive the most general scalar four-point correlator, i.e., the trispectrum, to all orders in derivatives for manifestly local contact interactions. To obtain this result we use techniques from commutative algebra to write down all possible scalar four-particle amplitudes without assuming invariance under Lorentz boosts. We then input these amplitudes into a contact reconstruction formula that generates a contact cosmological correlator in de Sitter spacetime from a contact scalar or graviton amplitude. We also show how the same procedure can be used to derive higher-point contact cosmological correlators. Our results further extend the reach of the boostless cosmological bootstrap and build a new connection between flat and curved spacetime physics.
70 - Junsei Tokuda 2019
We derive positivity bounds on low energy effective field theories which admit gapped, analytic, unitary, Lorentz invariant, and possibly non-local UV completions, by considering 2 to 2 scatterings of Jaffe fields whose Lehmann-K{a}ll{e}n spectral density can grow exponentially. Several properties of S-matrix, such as analyticity properties, are assumed in our derivation. Interestingly, we find that some of the positivity bounds obtained in the literature, such as sub-leading order forward-limit bounds, must be satisfied even when UV completions fall into non-localizable theories in Jaffes language, unless momentum space Wightman functions grow too rapidly at high energy. Under this restriction on the growth rate, such bounds may provide IR obstructions to analytic, unitary, and Lorentz invariant UV completions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا