Do you want to publish a course? Click here

Survey on Deep Neural Networks in Speech and Vision Systems

89   0   0.0 ( 0 )
 Added by Alexander Glandon
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This survey presents a review of state-of-the-art deep neural network architectures, algorithms, and systems in vision and speech applications. Recent advances in deep artificial neural network algorithms and architectures have spurred rapid innovation and development of intelligent vision and speech systems. With availability of vast amounts of sensor data and cloud computing for processing and training of deep neural networks, and with increased sophistication in mobile and embedded technology, the next-generation intelligent systems are poised to revolutionize personal and commercial computing. This survey begins by providing background and evolution of some of the most successful deep learning models for intelligent vision and speech systems to date. An overview of large-scale industrial research and development efforts is provided to emphasize future trends and prospects of intelligent vision and speech systems. Robust and efficient intelligent systems demand low-latency and high fidelity in resource-constrained hardware platforms such as mobile devices, robots, and automobiles. Therefore, this survey also provides a summary of key challenges and recent successes in running deep neural networks on hardware-restricted platforms, i.e. within limited memory, battery life, and processing capabilities. Finally, emerging applications of vision and speech across disciplines such as affective computing, intelligent transportation, and precision medicine are discussed. To our knowledge, this paper provides one of the most comprehensive surveys on the latest developments in intelligent vision and speech applications from the perspectives of both software and hardware systems. Many of these emerging technologies using deep neural networks show tremendous promise to revolutionize research and development for future vision and speech systems.

rate research

Read More

We present Deep Voice, a production-quality text-to-speech system constructed entirely from deep neural networks. Deep Voice lays the groundwork for truly end-to-end neural speech synthesis. The system comprises five major building blocks: a segmentation model for locating phoneme boundaries, a grapheme-to-phoneme conversion model, a phoneme duration prediction model, a fundamental frequency prediction model, and an audio synthesis model. For the segmentation model, we propose a novel way of performing phoneme boundary detection with deep neural networks using connectionist temporal classification (CTC) loss. For the audio synthesis model, we implement a variant of WaveNet that requires fewer parameters and trains faster than the original. By using a neural network for each component, our system is simpler and more flexible than traditional text-to-speech systems, where each component requires laborious feature engineering and extensive domain expertise. Finally, we show that inference with our system can be performed faster than real time and describe optimized WaveNet inference kernels on both CPU and GPU that achieve up to 400x speedups over existing implementations.
3D engineering of matter has opened up new avenues for designing systems that can perform various computational tasks through light-matter interaction. Here, we demonstrate the design of optical networks in the form of multiple diffractive layers that are trained using deep learning to transform and encode the spatial information of objects into the power spectrum of the diffracted light, which are used to perform optical classification of objects with a single-pixel spectroscopic detector. Using a time-domain spectroscopy setup with a plasmonic nanoantenna-based detector, we experimentally validated this machine vision framework at terahertz spectrum to optically classify the images of handwritten digits by detecting the spectral power of the diffracted light at ten distinct wavelengths, each representing one class/digit. We also report the coupling of this spectral encoding achieved through a diffractive optical network with a shallow electronic neural network, separately trained to reconstruct the images of handwritten digits based on solely the spectral information encoded in these ten distinct wavelengths within the diffracted light. These reconstructed images demonstrate task-specific image decompression and can also be cycled back as new inputs to the same diffractive network to improve its optical object classification. This unique machine vision framework merges the power of deep learning with the spatial and spectral processing capabilities of diffractive networks, and can also be extended to other spectral-domain measurement systems to enable new 3D imaging and sensing modalities integrated with spectrally encoded classification tasks performed through diffractive optical networks.
The computational complexity of leveraging deep neural networks for extracting deep feature representations is a significant barrier to its widespread adoption, particularly for use in embedded devices. One particularly promising strategy to addressing the complexity issue is the notion of evolutionary synthesis of deep neural networks, which was demonstrated to successfully produce highly efficient deep neural networks while retaining modeling performance. Here, we further extend upon the evolutionary synthesis strategy for achieving efficient feature extraction via the introduction of a stress-induced evolutionary synthesis framework, where stress signals are imposed upon the synapses of a deep neural network during training to induce stress and steer the synthesis process towards the production of more efficient deep neural networks over successive generations and improved model fidelity at a greater efficiency. The proposed stress-induced evolutionary synthesis approach is evaluated on a variety of different deep neural network architectures (LeNet5, AlexNet, and YOLOv2) on different tasks (object classification and object detection) to synthesize efficient StressedNets over multiple generations. Experimental results demonstrate the efficacy of the proposed framework to synthesize StressedNets with significant improvement in network architecture efficiency (e.g., 40x for AlexNet and 33x for YOLOv2) and speed improvements (e.g., 5.5x inference speed-up for YOLOv2 on an Nvidia Tegra X1 mobile processor).
In the last few years, deep learning has led to very good performance on a variety of problems, such as visual recognition, speech recognition and natural language processing. Among different types of deep neural networks, convolutional neural networks have been most extensively studied. Leveraging on the rapid growth in the amount of the annotated data and the great improvements in the strengths of graphics processor units, the research on convolutional neural networks has been emerged swiftly and achieved state-of-the-art results on various tasks. In this paper, we provide a broad survey of the recent advances in convolutional neural networks. We detailize the improvements of CNN on different aspects, including layer design, activation function, loss function, regularization, optimization and fast computation. Besides, we also introduce various applications of convolutional neural networks in computer vision, speech and natural language processing.
422 - Amir Rasouli 2020
Vision-based prediction algorithms have a wide range of applications including autonomous driving, surveillance, human-robot interaction, weather prediction. The objective of this paper is to provide an overview of the field in the past five years with a particular focus on deep learning approaches. For this purpose, we categorize these algorithms into video prediction, action prediction, trajectory prediction, body motion prediction, and other prediction applications. For each category, we highlight the common architectures, training methods and types of data used. In addition, we discuss the common evaluation metrics and datasets used for vision-based prediction tasks. A database of all the information presented in this survey including, cross-referenced according to papers, datasets and metrics, can be found online at https://github.com/aras62/vision-based-prediction.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا