Do you want to publish a course? Click here

Hot exciton transport in WSe2 monolayers

63   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally demonstrate hot exciton transport in h-BN encapsulated WSe2 monolayers via spatially and temporally resolved photoluminescence measurements at room temperature. We show that the nonlinear evolution of the mean squared displacement of the non-resonantly excited hot exciton gas is primarily due to the relaxation of its excess kinetic energy and is characterized by a density-dependent fast expansion that converges to a slower, constant rate expansion. We also observe saturation of the hot exciton gas expansion rate at high excitation densities due to the balance between Auger-assisted hot exciton generation and the phonon-assisted hot exciton relaxation processes.



rate research

Read More

We investigate the excitonic dynamics in MoSe2 monolayer and bulk samples by femtosecond transient absorption microscopy. Excitons are resonantly injected by a 750-nm and 100-fs laser pulse, and are detected by a probe pulse tuned in the range of 790 - 820 nm. We observe a strong density-dependent initial decay of the exciton population in monolayers, which can be well described by the exciton-exciton annihilation. Such a feature is not observed in the bulk under comparable conditions. We also observe the saturated absorption induced by exciton phase-space filling in both monolayers and the bulk, which indicates their potential applications as saturable absorbers.
96 - F.Cadiz , C. Robert , E. Courtade 2018
We have combined spatially-resolved steady-state micro-photoluminescence ($mu$PL) with time-resolved photoluminescence (TRPL) to investigate the exciton diffusion in a WSe$_2$ monolayer encapsulated with hexagonal boron nitride (hBN). At 300 K, we extract an exciton diffusion length $L_X= 0.36pm 0.02 ; mu$m and an exciton diffusion coefficient of $D_X=14.5 pm 2;mbox{cm}^2$/s. This represents a nearly 10-fold increase in the effective mobility of excitons with respect to several previously reported values on nonencapsulated samples. At cryogenic temperatures, the high optical quality of these samples has allowed us to discriminate the diffusion of the different exciton species : bright and dark neutral excitons, as well as charged excitons. The longer lifetime of dark neutral excitons yields a larger diffusion length of $L_{X^D}=1.5pm 0.02 ;mu$m.
The predicted formation of moire superlattices leading to confined excitonic states in heterostructures formed by stacking two lattice mismatched transition metal dichalcogenide (TMD) monolayers was recently experimentally confirmed. Such periodic potential in TMD heterostructure functions as a diffusion barrier that affects the energy transport and dynamics of interlayer excitons (electron and hole spatially concentrated in different monolayers). Understanding the transport of excitons under such condition is essential to establish the material system as a next generation device platform. In this work, we experimentally quantify the diffusion barrier experienced by the interlayer excitons in a hexagonal boron nitride (hBN) encapsulated, molybdenum diselenide tungsten/diselenide (MoSe2/WSe2) heterostructure by studying the exciton transport at various temperatures.
The optical responses of semiconducting transition metal dichalcogenides are dominated by excitons. Being able to strongly interact with light and other materials excitations, excitons in semiconductors are prototypes for investigating many-particle and strong-field physics, including exciton-exciton, exciton-photon, and exciton-phonon interactions. Strong exciton-photon interactions, in particular, can lead to the emergence of exciton-polariton hybrid quasiparticles with peculiar characteristics, and a tendency toward macroscopic and spontaneous coherence. Normally, far-field and near-field optical spectroscopy techniques are used to investigate exciton-photon interactions. Here, we demonstrate that the radiation generated by moving electrons in transition metal dichalcogenides, namely Cherenkov radiation, can strongly interact with excitons. We investigate the coherence properties and spectral signatures of exciton-photon interactions in TMDC bulk crystals, using cathodoluminescence spectroscopy. Our findings lay the ground for cathodoluminescence spectroscopy and in particular electron-beam techniques as probes of exciton-polariton spontaneous coherence in semiconductors, beyond the well-known plasmonic investigations.
The rise of quantum science and technologies motivates photonics research to seek new platforms with strong light-matter interactions to facilitate quantum behaviors at moderate light intensities. One promising platform to reach such strong light-matter interacting regimes is offered by polaritonic metasurfaces, which represent ultrathin artificial media structured on nano-scale and designed to support polaritons - half-light half-matter quasiparticles. Topological polaritons, or topolaritons, offer an ideal platform in this context, with unique properties stemming from topological phases of light strongly coupled with matter. Here we explore polaritonic metasurfaces based on 2D transition metal dichalcogenides (TMDs) supporting in-plane polarized exciton resonances as a promising platform for topological polaritonics. We enable a spin-Hall topolaritonic phase by strongly coupling valley polarized in-plane excitons in a TMD monolayer with a suitably engineered all-dielectric topological photonic metasurface. We first show that the strong coupling between topological photonic bands supported by the metasurface and excitonic bands in MoSe2 yields an effective phase winding and transition to a topolaritonic spin-Hall state. We then experimentally realize this phenomenon and confirm the presence of one-way spin-polarized edge topolaritons. Combined with the valley polarization in a MoSe2 monolayer, the proposed system enables a new approach to engage the photonic angular momentum and valley degree of freedom in TMDs, offering a promising platform for photonic/solid-state interfaces for valleytronics and spintronics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا