Do you want to publish a course? Click here

Topological order in matrix Ising models

181   0   0.0 ( 0 )
 Added by Sean A. Hartnoll
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a family of models for an $N_1 times N_2$ matrix worth of Ising spins $S_{aB}$. In the large $N_i$ limit we show that the spins soften, so that the partition function is described by a bosonic matrix integral with a single `spherical constraint. In this way we generalize the results of [1] to a wide class of Ising Hamiltonians with $O(N_1,mathbb{Z})times O(N_2,mathbb{Z})$ symmetry. The models can undergo topological large $N$ phase transitions in which the thermal expectation value of the distribution of singular values of the matrix $S_{aB}$ becomes disconnected. This topological transition competes with low temperature glassy and magnetically ordered phases.



rate research

Read More

161 - Jorge G. Russo 2020
We investigate the different large $N$ phases of a generalized Gross-Witten-Wadia $U(N)$ matrix model. The deformation mimics the one-loop determinant of fermion matter with a particular coupling to gauge fields. In one version of the model, the GWW phase transition is smoothed out and it becomes a crossover. In another version, the phase transition occurs along a critical line in the two-dimensional parameter space spanned by the t~Hooft coupling $lambda$ and the Veneziano parameter $tau$. We compute the expectation value of Wilson loops in both phases, showing that the transition is third-order. A calculation of the $beta $ function shows the existence of an IR stable fixed point.
This work addresses nonperturbative effects in both matrix models and topological strings, and their relation with the large-order behavior of the 1/N expansion. We study instanton configurations in generic one-cut matrix models, obtaining explicit results for the one-instanton amplitude at both one and two loops. The holographic description of topological strings in terms of matrix models implies that our nonperturbative results also apply to topological strings on toric Calabi-Yau manifolds. This yields very precise predictions for the large-order behavior of the perturbative genus expansion, both in conventional matrix models and in topological string theory. We test these predictions in detail in various examples, including the quartic matrix model, topological strings on the local curve, and Hurwitz theory. In all these cases we provide extensive numerical checks which heavily support our nonperturbative analytical results. Moreover, since all these models have a critical point describing two-dimensional gravity, we also obtain in this way the large-order asymptotics of the relevant solution to the Painleve I equation, including corrections in inverse genus. From a mathematical point of view, our results predict the large-genus asymptotics of simple Hurwitz numbers and of local Gromov-Witten invariants.
159 - M. Billo , M. Caselle , D. Gaiotto 2013
We investigate the properties of the twist line defect in the critical 3d Ising model using Monte Carlo simulations. In this model the twist line defect is the boundary of a surface of frustrated links or, in a dual description, the Wilson line of the Z2 gauge theory. We test the hypothesis that the twist line defect flows to a conformal line defect at criticality and evaluate numerically the low-lying spectrum of anomalous dimensions of the local operators which live on the defect as well as mixed correlation functions of local operators in the bulk and on the defect.
A novel order parameter $Phi$ for spin glasses is defined based on topological criteria and with a clear physical interpretation. $Phi$ is first investigated for well known magnetic systems and then applied to the Edwards-Anderson $pm J$ model on a square lattice, comparing its properties with the usual $q$ order parameter. Finite size scaling procedures are performed. Results and analyses based on $Phi$ confirm a zero temperature phase transition and allow to identify the low temperature phase. The advantages of $Phi$ are brought out and its physical meaning is established.
Models whose ground states can be written as an exact matrix product state (MPS) provide valuable insights into phases of matter. While MPS-solvable models are typically studied as isolated points in a phase diagram, they can belong to a connected network of MPS-solvable models, which we call the MPS skeleton. As a case study where we can completely unearth this skeleton, we focus on the one-dimensional BDI class -- non-interacting spinless fermions with time-reversal symmetry. This class, labelled by a topological winding number, contains the Kitaev chain and is Jordan-Wigner-dual to various symmetry-breaking and symmetry-protected topological (SPT) spin chains. We show that one can read off from the Hamiltonian whether its ground state is an MPS: defining a polynomial whose coefficients are the Hamiltonian parameters, MPS-solvability corresponds to this polynomial being a perfect square. We provide an explicit construction of the ground state MPS, its bond dimension growing exponentially with the range of the Hamiltonian. This complete characterization of the MPS skeleton in parameter space has three significant consequences: (i) any two topologically distinct phases in this class admit a path of MPS-solvable models between them, including the phase transition which obeys an area law for its entanglement entropy; (ii) we illustrate that the subset of MPS-solvable models is dense in this class by constructing a sequence of MPS-solvable models which converge to the Kitaev chain (equivalently, the quantum Ising chain in a transverse field); (iii) a subset of these MPS states can be particularly efficiently processed on a noisy intermediate-scale quantum computer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا