Do you want to publish a course? Click here

Push-Pull Optimization of Quantum Controls

100   0   0.0 ( 0 )
 Added by Priya Batra Ms.
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Quantum optimal control involves setting up an objective function that evaluates the quality of an operator representing the realized process w.r.t. the target process. Here we propose a stronger objective function which incorporates not only the target operator but also a set of its orthogonal operators. We find significantly superior convergence of optimization routines with the combined influences of all the operators. We refer to this method as the $textit{push-pull}$ optimization. In particular, we describe adopting the push-pull optimization to a gradient based approach and a variational-principle based approach. We carry out extensive numerical simulations of the push-pull optimization of quantum controls on a pair of Ising coupled qubits. Finally, we demonstrate its experimental application by preparing a long-lived singlet-order in a two-qubit system using NMR techniques.



rate research

Read More

120 - Yulong Dong , Xiang Meng , Lin Lin 2019
Quantum variational algorithms have garnered significant interest recently, due to their feasibility of being implemented and tested on noisy intermediate scale quantum (NISQ) devices. We examine the robustness of the quantum approximate optimization algorithm (QAOA), which can be used to solve certain quantum control problems, state preparation problems, and combinatorial optimization problems. We demonstrate that the error of QAOA simulation can be significantly reduced by robust control optimization techniques, specifically, by sequential convex programming (SCP), to ensure error suppression in situations where the source of the error is known but not necessarily its magnitude. We show that robust optimization improves both the objective landscape of QAOA as well as overall circuit fidelity in the presence of coherent errors and errors in initial state preparation.
We investigate two classes of quantum control problems by using frequency-domain optimization algorithms in the context of ultrafast laser control of quantum systems. In the first class, the system model is known and a frequency-domain gradient-based optimization algorithm is applied to searching for an optimal control field to selectively and robustly manipulate the population transfer in atomic Rubidium. The other class of quantum control problems involves an experimental system with an unknown model. In the case, we introduce a differential evolution algorithm with a mixed strategy to search for optimal control fields and demonstrate the capability in an ultrafast laser control experiment for the fragmentation of Pr(hfac)$_3$ molecules.
A classical result of Schubert calculus is an inductive description of Schubert cycles using divided difference (or push-pull) operators in Chow rings. We define convex geometric analogs of push-pull operators and describe their applications to the theory of Newton-Okounkov convex bodies. Convex geometric push-pull operators yield an inductive construction of Newton-Okounkov polytopes of Bott-Samelson varieties. In particular, we construct a Minkowski sum of Feigin-Fourier-Littelmann-Vinberg polytopes using convex geometric push-pull operators in type A.
Ajax applications are designed to have high user interactivity and low user-perceived latency. Real-time dynamic web data such as news headlines, stock tickers, and auction updates need to be propagated to the users as soon as possible. However, Ajax still suffers from the limitations of the Webs request/response architecture which prevents servers from pushing real-time dynamic web data. Such applications usually use a pull style to obtain the latest updates, where the client actively requests the changes based on a predefined interval. It is possible to overcome this limitation by adopting a push style of interaction where the server broadcasts data when a change occurs on the server side. Both these options have their own trade-offs. This paper explores the fundamental limits of browser-based applications and analyzes push solutions for Ajax technology. It also shows the results of an empirical study comparing push and pull.
148 - Hendra I. Nurdin 2019
This brief article gives an overview of quantum mechanics as a {em quantum probability theory}. It begins with a review of the basic operator-algebraic elements that connect probability theory with quantum probability theory. Then quantum stochastic processes is formulated as a generalization of stochastic processes within the framework of quantum probability theory. Quantum Markov models from quantum optics are used to explicitly illustrate the underlying abstract concepts and their connections to the quantum regression theorem from quantum optics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا