Do you want to publish a course? Click here

The NANOGrav Program for Gravitational Waves and Fundamental Physics

85   0   0.0 ( 0 )
 Added by Scott Ransom
 Publication date 2019
  fields Physics
and research's language is English
 Authors A. Brazier




Ask ChatGPT about the research

We describe the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) and its efforts to directly detect and study gravitational waves and other synergistic physics and astrophysics using radio timing observations of millisecond pulsars.



rate research

Read More

88 - Zack Carson 2020
The explosive coalescence of two black holes 1.3 billion light years away has for the very first time allowed us to peer into the extreme gravity region of spacetime surrounding these events. With these maximally compact objects reaching speeds up to 60% the speed of light, collision events such as these create harsh spacetime environments where the fields are strong, non-linear, and highly dynamical -- a place yet un-probed in human history. On September 14, 2015, the iconic chirp signal from such an event was registered simultaneously by both of the Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors -- by an unparalleled feat of modern engineering. Dubbed GW150914, this gravitational wave event paved the way for an entirely new observing window into the universe, providing for the unique opportunity to probe fundamental physics from an entirely new viewpoint. Since this historic event, the LIGO/Virgo collaboration (LVC) has further identified ten additional gravitational wave signals in its first two observing runs, composed of a myriad of different events. Important among these new cataloged detections is GW170817, the first detection of gravitational waves from the merger of two neutron stars, giving way to new insight into the supranuclear physics resident within. This thesis explores this new unique opportunity to harness the information encoded within gravitational waves in regards to their source whence they came, to probe fundamental physics from an entirely new perspective. Part A focuses on probing nuclear physics by way of the tidal information encoded within gravitational waves from binary neutron star mergers. Part B focuses on testing general relativity from such events by way of the remnants of such spacetime encoded within the gravitational wave signal.
Gravitational-wave memory manifests as a permanent distortion of an idealized gravitational-wave detector and arises generically from energetic astrophysical events. For example, binary black hole mergers are expected to emit memory bursts a little more than an order of magnitude smaller in strain than the oscillatory parent waves. We introduce the concept of orphan memory: gravitational-wave memory for which there is no detectable parent signal. In particular, high-frequency gravitational-wave bursts ($gtrsim$ kHz) produce orphan memory in the LIGO/Virgo band. We show that Advanced LIGO measurements can place stringent limits on the existence of high-frequency gravitational waves, effectively increasing the LIGO bandwidth by orders of magnitude. We investigate the prospects for and implications of future searches for orphan memory.
The grand challenges of contemporary fundamental physics---dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem---all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress.
We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrades astrophysical applications. We present a comprehensive study of the detectors technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrades implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z~6 and would be sensitive to intermediate-mass black holes up to 2000 M_odot. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz, and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r-modes and the gravitational memory effects.
Searches for gravitational waves crucially depend on exact signal processing of noisy strain data from gravitational wave detectors, which are known to exhibit significant non-Gaussian behavior. In this paper, we study two distinct non-Gaussian effects in the LIGO/Virgo data which reduce the sensitivity of searches: first, variations in the noise power spectral density (PSD) on timescales of more than a few seconds; and second, loud and abrupt transient `glitches of terrestrial or instrumental origin. We derive a simple procedure to correct, at first order, the effect of the variation in the PSD on the search background. Given the knowledge of the existence of localized glitches in particular segments of data, we also develop a method to insulate statistical inference from these glitches, so as to cleanly excise them without affecting the search background in neighboring seconds. We show the importance of applying these methods on the publicly available LIGO data, and measure an increase in the detection volume of at least $15%$ from the PSD-drift correction alone, due to the improved background distribution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا