No Arabic abstract
The explosive coalescence of two black holes 1.3 billion light years away has for the very first time allowed us to peer into the extreme gravity region of spacetime surrounding these events. With these maximally compact objects reaching speeds up to 60% the speed of light, collision events such as these create harsh spacetime environments where the fields are strong, non-linear, and highly dynamical -- a place yet un-probed in human history. On September 14, 2015, the iconic chirp signal from such an event was registered simultaneously by both of the Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors -- by an unparalleled feat of modern engineering. Dubbed GW150914, this gravitational wave event paved the way for an entirely new observing window into the universe, providing for the unique opportunity to probe fundamental physics from an entirely new viewpoint. Since this historic event, the LIGO/Virgo collaboration (LVC) has further identified ten additional gravitational wave signals in its first two observing runs, composed of a myriad of different events. Important among these new cataloged detections is GW170817, the first detection of gravitational waves from the merger of two neutron stars, giving way to new insight into the supranuclear physics resident within. This thesis explores this new unique opportunity to harness the information encoded within gravitational waves in regards to their source whence they came, to probe fundamental physics from an entirely new perspective. Part A focuses on probing nuclear physics by way of the tidal information encoded within gravitational waves from binary neutron star mergers. Part B focuses on testing general relativity from such events by way of the remnants of such spacetime encoded within the gravitational wave signal.
The grand challenges of contemporary fundamental physics---dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem---all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress.
Gravitational waves from the explosive merger of distant black holes are encoded with details regarding the complex extreme-gravity spacetime present at their source. Famously described by the Kerr spacetime metric for rotating black holes in general relativity, what if effects beyond this theory are present? One way to efficiently test this hypothesis is to first obtain a metric which parametrically deviates from the Kerr metric in a model-independent way. Given such a metric, one can then predict the ensuing corrections to both the inspiral and ringdown portions of the gravitational waveform for black holes present in the new spacetime. With these tools in hand, one can then test gravitational wave signals for such effects by two different methods, (i) inspiral-merger-ringdown consistency test, and (ii) parameterized test. In this paper, we demonstrate the exact recipe one needs to do just this. We first derive parameterized corrections to the waveform inspiral, ringdown, and remnant properties for a generic non-Kerr spacetime and apply this to two example beyond-Kerr spacetimes each parameterized by a single non-Kerr parameter. We then predict the beyond-Kerr parameter magnitudes required in an observed gravitational wave signal to be statistically inconsistent with the Kerr case in general relativity. We find that the two methods give very similar bounds. The constraints found with existing gravitational-wave events are comparable to those from x-ray observations, while future gravitational-wave observations using Cosmic Explorer (Laser Interferometer Space Antenna) can improve such bounds by two (three) orders of magnitude.
Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.
A novel method for extending frequency frontier in gravitational wave observations is proposed. It is shown that gravitational waves can excite a magnon. Thus, gravitational waves can be probed by a graviton-magnon detector which measures resonance fluorescence of magnons. Searching for gravitational waves with a wave length $lambda$ by using a ferromagnetic sample with a dimension $l$, the sensitivity of the graviton-magnon detector reaches spectral densities, around $5.4 times 10^{-22} times (frac{l}{lambda /2pi})^{-2} [{rm Hz}^{-1/2}]$ at 14 GHz and $8.6 times 10^{-21} times (frac{l}{lambda /2pi})^{-2} [{rm Hz}^{-1/2}]$ at 8.2 GHz, respectively.
This decade will see the first direct detections of gravitational waves by observatories such as Advanced LIGO and Virgo. Among the prime sources are coalescences of binary neutron stars and black holes, which are ideal probes of dynamical spacetime. This will herald a new era in the empirical study of gravitation. For the first time, we will have access to the genuinely strong-field dynamics, where low-energy imprints of quantum gravity may well show up. In addition, we will be able to search for effects which might only make their presence known at large distance scales, such as the ones that gravitational waves must traverse in going from source to observer. Finally, coalescing binaries can be used as cosmic distance markers, to study the large-scale structure and evolution of the Universe. With the advanced detector era fast approaching, concrete data analysis algorithms are being developed to look for deviations from general relativity in signals from coalescing binaries, taking into account the noisy detector output as well as the expectation that most sources will be near the threshold of detectability. Similarly, several practical methods have been proposed to use them for cosmology. We explain the state of the art, including the obstacles that still need to be overcome in order to make optimal use of the signals that will be detected. Although the emphasis will be on second-generation observatories, we will also discuss some of the science that could be done with future third-generation ground-based facilities such as Einstein Telescope, as well as with space-based detectors.